MATH 555 Introduction to Commutative Algebra

Description

Basics of rings and ideals. Rings of fractions, integral dependence, valuation rings, discrete valuation rings, Dedekind domains, fractional ideals. Topologies and completions, filtrations, graded rings and graded modules. Dimension theory.

Textbook

M. F. Atiyah & I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969. Paperback edition, Perseus Publishing, December 1994.

Syllabus

Week	Chapter	Material
1-2	1	Rings and ideals; Prime and maximal ideals; Nilradical and Jacobson radical;
		Operations on ideals; Extension and contraction
3-4	2	Modules; Nakayama's Lemma; Exact sequences
		Tensor products of modules; Exactness
5	3	Rings and modules of fractions; Local properties
		Extension and contraction in rings of fractions
6-7	5	Integral dependence and valuations; Going-up and going-down
		Valuation rings; Hilbert's Nullstellensatz
8	6	Chain conditions
		Noetherian and Artinian modules
9	7	Noetherian rings, Hilbert's Basis Theorem
		Hilbert's Nullstellensatz (weak and strong versions). Noether's Normalization Lemma.
10	8	Artinian rings
		Structure Theorem
11-12	9	Krull dimension; Discrete valuation rings; Dedekind domains
		Ring of integers of an algebraic number field; Invertibility
13-15	10	Topologies and completions; Completion via Cauchy sequences
		Completion via inverse limit; Exactness of completion; I-adic topology Filtrations;
		Graded rings and modules; Associated graded ring

Grading Policy

HW 1 (Chapters 1-3, 5) [20 problems]			
Midterm Exam (Chapters 1-3, 5) [duration = 6 hours]			
HW 2 (Chapters 6-10) [30 problems]			
Final Exam (Chapters 6-10) [duration = 6 hours]			
TOTAL	150		