
Remark: Solve **6** questions including **Q6** & **Q7**. Show **full details**. All rings are commutative and non-zero.

Q1. (15 points) Let R be a commutative ring and consider the prime spectrum $X = \text{Spec}(R)$ with the Zariski topology. Show that the maps

$$I \longmapsto V(I) \text{ and } Y \longmapsto \bigcap_{P \in Y} P$$

provide

- (a) 1–1 correspondence between $\{I \leq_R R \mid I = \sqrt{I}\}$ and the collection of *closed sets* in X .
- (b) 1–1 correspondence between $\text{Spec}(R)$ and the collection of *irreducible closed sets* in X .
- (c) 1–1 correspondence between $\text{Min}(R)$ and the collection of *irreducible components* of X .

Q2. (15 points) Let M be a module over a commutative ring R . Show that:

- (a) There exists a surjective R -linear map $\psi : R^m \rightarrow M$ with $\text{Ker}(\psi)$ finitely generated as an R -module if and only if M is *finitely presented* (i.e. there exists an exact sequence of R -modules $R^n \rightarrow R^m \rightarrow M \rightarrow 0$).
- (b) If $_R M$ is finitely presented and $S \subseteq R \setminus \{0\}$ is a multiplicatively closed subset, then

$$S^{-1} \text{Hom}_R(M, N) \simeq \text{Hom}_{S^{-1}R}(S^{-1}M, S^{-1}N).$$

- (c) If $_R M$ is finitely generated and $\phi : M \rightarrow R^k$ is surjective, then $\text{Ker}(\phi) \leq_{\oplus} M$ is a direct summand and finitely generated.

Q3. (15 points) Show that the following are equivalent for a commutative ring R :

- (a) R is absolutely flat (i.e. every R -module is flat).
- (b) Every principal ideal of R is idempotent.
- (c) Every finitely generated ideal of R is a direct summand.

Q4. (15 points) Let R be an integral domain with field of fractions K .

(a) Show that $R_P \hookrightarrow K$ canonically for every $P \in \text{Spec}(R)$.

(b) Show that $R = \bigcap_{P \in \text{Spec}(R)} R_P = \bigcap_{\mathfrak{m} \in \text{Max}(R)} R_{\mathfrak{m}}$.

(c) Find $\text{Tor}_R^1(K, R \oplus K)$.

Q5. (15 points) Let R be an integral domain and $S \subseteq R \setminus \{0\}$ be a multiplicatively closed subset. Call $I \leq_R R$ an *S-large ideal* iff every $\mathfrak{m} \in V(I) \cap \text{Max}(R)$ is disjoint from S . Show that

(a) If I is an *S-large ideal* of R , then $S^{-1}I \cap R = I$.

(b) There is morphism of *monoids* between the set of *S-large ideals* of R and the set of ideal of $S^{-1}I$ (where the operations are multiplication of ideals).

(c) If I is an *S-large ideal* of R , then there is a *natural* isomorphism of rings

$$R/I \simeq S^{-1}R/S^{-1}I.$$

Q6. (16 points) Compute *up to isomorphism* (showing full details):

(a) $\mathbb{Z}_{12} \otimes_{\mathbb{Z}} \mathbb{Z}_{30}$

(b) $S^{-1}R[x]$, where $S = \{x^n \mid n \geq 0\}$

(c) $(\mathbb{Q}[x]_{(x-3)}, \mathfrak{m})$ and $\mathbb{Q}[x]_{(x-3)}/\mathfrak{m}$ (where \mathfrak{m} is the maximal ideal of $\mathbb{Q}[x]_{(x-3)}$)

(d) $\text{Jac}(\mathbb{R}[[x]])$

Q7. (24 points) Prove or disprove:

(a) Being an integral domain is a local property.

(b) For any proper ideal I of a commutative ring R , the variety $V(I)$ has minimal elements (with respect to inclusion).

(c) If R is a commutative ring, M is an R -module, I is a *finitely generated* ideal of R such that $I \subseteq \text{Jac}(R)$ and $IM = M$, then $M = 0$.

(d) If R is a commutative ring and $S \subseteq R \setminus \{0\}$ is a multiplicatively closed subset, then the ring $S^{-1}R$ is local.

GOOD LUCK