King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 555 (Term 222)

Mid-term Exam (Duration = 6 hours)

Problem 1. [10]

Let *A* be a commutative ring and Spec(*A*) the spectrum of *A* endowed with Zariski topology. A topological space *Y* is *irreducible* if *Y* is not empty and any two non-empty open subsets of *Y* intersect or, equivalently, if $Y = V_1 \cup V_2$ with V_1 and V_2 closed, then $Y = V_1$ or $Y = V_2$.

- (1) Show that the set Spec(*A*) has minimal elements with respect to inclusion.
- (2) Show that Spec(A) is irreducible if and only if $\text{Nil}(A) \in \text{Spec}(A)$.
- (3) Let *X* be a topological space. Show that if *Y* is an irreducible subspace of *X*, then so is \overline{Y} .
- (4) Show that every irreducible subspace of X is contained in a *maximal irreducible* subspace.
- (5) Show that the *maximal irreducible* subspaces of *X* are closed and cover *X*.
- (6) Find the *maximal irreducible* subspaces of Spec(*A*).

Problem 2. [10]

Let *A* be a commutative ring and let *E*, *F* be *A*-modules. We say that *E* is *F*-flat, if for any exact sequence $0 \longrightarrow F' \longrightarrow F$, the sequence $0 \longrightarrow E \otimes F' \longrightarrow E \otimes F$ is exact.

- (1) Give an example for *A*, *E*, and *F* such that *E* is **not** *F*-flat.
- (2) Let $\{F_i\}_i$ be a family of *A*-modules and *F* their direct sum. Prove: *E* is F_i -flat, $\forall i \iff E$ is *F*-flat.
- (3) Use (2) to prove that if $0 \rightarrow E \otimes I \rightarrow E$ is exact, for every ideal *I* of *A*, then *E* is flat.
- (4) Use (3) to prove that the polynomial ring A[X] is a flat A-algebra.

Problem 3. [10]

Let *A* be an integral domain with quotient field *K* and let *M* be an *A*-module. An element $x \in M$ is a torsion element of *M* if $Ann_A(x) \neq 0$; that is, if *x* is killed by some non-zero element of *A*. The torsion elements of *M* form a sub-module of *M*, called the torsion submodule of *M* and denoted by t(M). If t(M) = 0, the module *M* is said to be *torsion-free*. Prove:

- (1) Each exact sequence $0 \to M' \xrightarrow{f} M \xrightarrow{g} M''$ induces an exact sequence $0 \to t(M') \xrightarrow{f} t(M) \xrightarrow{\overline{g}} t(M'')$.
- (2) If $g: M \to M''$ is onto, then $\overline{g}: t(M) \to t(M'')$ is not necessarily onto.
- (3) Consider the mapping $\varphi : M \longrightarrow K \otimes M$, $x \mapsto 1 \otimes x$. Then $\text{Ker}(\varphi) = t(M)$.
- (4) *M* is torsion free if and only if $M_{\mathfrak{m}}$ is torsion free for each $\mathfrak{m} \in Max(A)$.
- (5) Let *I* be an ideal of *A*. If $M_{\mathfrak{m}} = 0$ for all maximal ideals $\mathfrak{m} \supseteq I$, then M = IM.

Problem 4. [15]

- (1) Let *A* be a commutative ring. Show that the following are equivalent:
 - (i) Every prime ideal of A is an intersection of maximal ideals;
 - (ii) For every ideal *I* of *A*, the nilradical and Jacobson radical of *A*/*I* are equal;
 - (iii) Every prime ideal of A, which is not maximal, is equal to the intersection of the prime ideals which contain it strictly.

A ring A with any one of the three equivalent properties above is called a Jacobson ring.

- (2) Let $A \subseteq B$ be an *integral* extension of commutative rings. Prove that if A is Jacobson, then so is B.
- (3) Give an example of a commutative ring which is Jacobson and another example which is NOT.

Problem 5. [15]

- (1) Let *k* be a field and $A := k[x_1, ..., x_n]$ be a finitely generated *k*-algebra. Let $k(x_1, ..., x_n) := qf(A)$ and let *r* denote the transcendence degree of $k(x_1, ..., x_n)$ over *k*. By [Hungerford, VI–Corollary 1.7], $\{x_1, ..., x_n\}$ contains a transcendence base of $k(x_1, ..., x_n)$ over *k*; that is, $n \ge r$. Throughout, assume $n \ge r$. Prove:
 - (a) $\sum_{(i_1,\dots,i_n)\in\Delta}a_{(i_1,\dots,i_n)}x_1^{i_1}\cdots x_n^{i_n}=0$, for some finite set $\Delta \subset \mathbb{N}^n$ and nonzero elements $a_{(i_1,\dots,i_n)}$'s in k.
 - (b) Let *N* be a positive integer such that $N \ge \sup\{i_1, \dots, i_n\}$, for all $(i_1, \dots, i_n) \in \Delta$. Then, for $(i_1, \dots, i_n) \in \Delta$ and $(j_1, \dots, j_n) \in \Delta$, we have:

$$i_1 + Ni_2 + \dots + N^{n-1}i_n = j_1 + Nj_2 + \dots + N^{n-1}j_n \Rightarrow (i_1, \dots, i_n) = (j_1, \dots, j_n)$$

(c) Let $y_i = x_i - x_1^{N^{i-1}}$, for all $i \in \{2, ..., n\}$. Then, there exist a nonzero positive integer *m*, a nonzero element $a \in k$, and a *polynomial* $f \in k[\mathbf{X}_1, ..., \mathbf{X}_n]$ with $\deg_{\mathbf{X}_1}(f) \le m - 1$ such that:

$$ax_1^m + f(x_1, y_2, \dots, y_n) = 0.$$

- (d) $k[y_2, ..., y_n] \subseteq A$ is an integral extension.
- (e) There exist $t_1, ..., t_r \in A$, algebraically independent over k, such that the extension $k[t_1, ..., t_r] \subseteq A$ is integral (*Noether's Normalization Lemma*). (The case n = r is trivial.)
- (2) Let *A* be a subring of an integral domain *B* such that *B* is a finitely generated *A*-algebra. Then, there exist 0 ≠ a in *A* and y₁,..., y_n in *B* algebraically independent over *A* such that the ring extension A[y₁,..., y_n][1/a] ⊆ B[1/a] is integral.

Problem 6. [20]

- (1) Let *R* be a Noetherian local ring with maximal ideal *M* and let d(R) denote the dimension of M/M^2 as an *R*/*M*-vector space. Prove that, for each $x \in M \setminus M^2$, d(R) = d(R/xR) + 1.
- (2) Let *R* be a Noetherian ring and let $X_1, ..., X_n$ be indeterminates over *R*. Let $p \in \text{Spec}(R)$. Prove that $d(R[X_1,...,X_n]_{p[X_1,...,X_n]}) = d(R_p)$.