Department of Mathematics & Statistics, KFUPM Math 557 Syllabus (Term 211) Instructor: Khaled M. Furati

Course Title:	Applied linear algebra		
Course Description:	Basics concepts from linear algebra and numerical analysis. Direct methods for large, sparse linear systems, Cholesky and LU factorizations. Regularization of ill- conditioned least squares problems. SVD and QR factorizations. Sensitivity and conditioning of linear systems and least square problems. Stationary and non- stationary iterative methods, multigrid methods. Matrix theory including spectral decompositions, and eigenvalue perturbation theory. Eigenvalue and QR algorithm, and computations of SVD. Applications.		
Prerequisite:	Graduate standing		
Textbook:	Numerical Linear Algebra, Lyche, 2020		
References:	Numerical Linear Algebra, Trefethen, 1997. Numerical Linear Algebra, Lyton and Sussman, 2014 (2020) Linear Algebra and Matrix Computations, Xue, 2020		
Learning Outcomes:	 Upon completion of this course, students will be able to: 1. Apply fundamental numerical linear algebra concepts 		

- 2. Estimate stability of solutions to linear algebraic equations & eigenvalue problems
- 3. Utilize factorizations for efficiently solving linear systems and least squares problems
- 4. Use the underlying principles of iterative algorithms for computing and selecting eigenvalues and finding singular values
- 5. Estimate the speed of convergence and computational complexity of the selected numerical algorithms

Assessment	
,	

Homework, Project, Midterm Exam and Final Exam.

WK	Date	Part	Ch	Topics	
1	Aug 29-Sep 2	**	1	Review of linear algebra	
2	Sep 05-09	l LU & QR factorization	2	Example: Diagonally dominant tridiagonal matrices	
3	Sep 12-16		3	Gaussian elimination and LU factorization	
4	Sep 19-23		4	LDL* factorization and positive definite matrices	
5	Set 26-30		5	Orthonormal and unitary transformations	
6	Oct 03-07	II Eigenpairs & singular values	6	Eigenpairs and similarity transformations	
7	Oct 10-14		7	Singular value decomposition	
8	Oct 17-21	III Matrix norms & Least squares	8	Matrix norms and Perturbation Theory	
9	Oct 24-28		9	Least squares	
10	Oct 31-Nov 04	V Iterative methods for	12	Classical iterative methods	
11	Nov 07-11	large linear systems	13	Conjugate gradient method	
12	Nov 14-18	VI Eigenvalues and eigenvectors	14	Numerical eigenvalue problems	
13	Nove 21-25		15	The QR algorithm	
В	Nov 28-Dec 02	Break			
14	Dec 05-09	5-09 2-16		Projects prentations	
15	Dec 12-16			Review	