King Fahd University of Petroleum and Minerals
MX-Program
Math557-231 Exam 1

Name: \qquad ID\# \qquad Sec\# \qquad

Q\#	Marks Obtained	Total Marks
1		10
2		10
3		10
4		17
5		10
6		15
7		10
8		8
9		100
Total		

Q1. (10 points) Write v_{4} as a linear combination of v_{1}, v_{2}, v_{3}.

$$
v_{1}=\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right)
$$

Hint: Find c_{1}, c_{2}, c_{3} by solving $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=v_{4}$ and then write

$$
v_{4}=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}
$$

Q2. (10 points) Use partial pivoting to solve the linear system,

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=5 \\
7 x_{1}+5 x_{2}-x_{3}=8 \\
2 x_{1}+x_{2}+x_{3}=7
\end{gathered}
$$

Answer without partial pivoting is not acceptable.

Q3. (10 points) Find $L U$ factorization of $A=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 5 & 2 & 4 & 0 \\ 0 & 3 & 3 & 6 \\ 0 & 0 & 1 & 4\end{array}\right]$

Q4. (17 points) Solve the Poison problem using $L U$ factorization of the tridiagonal coefficient matrix with $n=3$,

$$
-u^{\prime \prime}=x+1, \quad x \in[0,1], \quad u(0)=1, \quad u(1)=0.5
$$

Q5. (8+2 points) Consider the square matrices,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right], O=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text {, and } B=\left[\begin{array}{cc}
A & A^{2} \\
O & A
\end{array}\right]
$$

Use block matrices to find, a) B^{-1}. b) $\operatorname{det}(B)$.

Q6. (10 points) Compute A^{-1} for $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$ using any technique.
(Not using a calculator)

Q7. (8+7 points) Compute the following:
(a) $L D L^{*}$ factorization of $A=\left[\begin{array}{cc}3 & 4+3 i \\ 4-3 i & 5\end{array}\right]$.
(b) Cholesky factorization $L L^{*}$ of $A=\left[\begin{array}{ll}4 & 2 \\ 2 & 5\end{array}\right]$.

Q8. $(2+2+2+4$ points) Use Theorem 4.3 and answer the following: Answer with justification.
(a) Which necessary condition is not satisfied for $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$ to be positive definite.
(b) Which necessary condition is not satisfied for $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & 3\end{array}\right]$ to be positive definite.
(c) Can this $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]$ to be positive definite. If not, why?
(d) Show that all the necessary condition are satisfied for $A=\left[\begin{array}{cc}4 & 4-3 i \\ 4+3 i & 5\end{array}\right]$ to be positive definite.

Q9. (8 points) Write quadratic form of $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ and show that it is positive definite.

