
MATH557 — Applied Linear Algebra
Final Exam

Dr. Slim Belhaiza
Department of Mathematics

KFUPM

Duration: 2h30
No Computer, Regular Calculators Allowed

Instructions

• Answer all questions. Total: 100 points.

• Show all essential steps. Exact values are preferred; keep radicals as needed.

• You may state (without proof) standard theorems about eigen-decomposition, Cholesky,
QR, and SVD.

• Unless specified, vectors are columns. Use clear notation for orthogonality and projec-
tions.
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Question 1 — Matrix Calculus Warm-up (10 points)

Let

A(t) =

(
t+ 2 1
1 2t+ 1

)
, t > 0.

1. (4 pts) Compute
d

dt
A(t)−1 using the identity

d

dt
A−1 = −A−1A′A−1.

2. (3 pts) Compute the eigenvalues λ1(t), λ2(t) of A(t).

3. (3 pts) Differentiate your eigenvalues to obtain λ′
1(t), λ

′
2(t).

2



.

3



Question 2 — Cholesky Factorization and SPD Check

(12 points)

Consider

S =

4 2 0
2 3 1
0 1 2

 .

1. (4 pts) Determine whether S is symmetric positive definite (SPD).

2. (8 pts) If S is SPD, compute the Cholesky factorization S = LLT with L lower-
triangular and diagonal entries > 0.

4



.

5



Question 3 — QR / Gram–Schmidt (12 points)

Let

A =

1 1
1 2
1 3

 .

1. (8 pts) Perform (classical) Gram–Schmidt to compute a reduced QR factorization
A = QR, where Q ∈ R3×2 has orthonormal columns and R ∈ R2×2 is upper-triangular.

2. (4 pts) Explain briefly why solving minx ∥Ax − b∥2 is easy once A = QR is known
(write the normal equation in QR form).
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Question 4— Least Squares and Pseudoinverse (14 points)

Let

A =

1 0
1 1
1 2

 , b =

1
0
1

 .

1. (9 pts) Compute the least-squares solution x∗ = argminx ∥Ax − b∥2 using the pseu-
doinverse of A.

2. (5 pts) Compute the residual r = b− Ax∗ and verify AT r = 0.
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Question 5 — One Iteration: GD vs Newton (14 points)

Let
f(x1, x2) = (x1 − 1)2 + (x2 + 1)4 + x1x2.

1. (6 pts) Compute ∇f and the Hessian H.

2. (4 pts) Perform one iteration of Gradient Descent from (0, 0) with step size α = 1
4
.

3. (4 pts) Perform one iteration of Newton-Raphson’s method from (0, 0) (assume H(0, 0)
is invertible). State whether your iterate is a stationary point (justify briefly).
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Question 6 — Matrix Completion (12 points)

1. (6 pts) Find the matrix S =

(
a b c
d e f

)
, with the smallest l2 norm ||S||2 and such that:

S

 1
1

−1

 =

[
−1
1

]
.

2. (6 pts) Find the best possible real-valued matrix A∗ that completes A =

(
∗ 2
1 ∗

)
and

minimizes:

min
C and R

1

2
||(A− CRt)known||22 +

1

2
(||C||2F + ||R||2F )

where CRt = (2× 1)(1× 2).
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Question 7 — Small Neural Net: Gradient and Hessian

Structure (12 points)

We observe data {(p1t, p2t, yt)}Tt=1 and fit the (non-linear) one-neuron model

ŷt(w1, w2, w3, w4, w5, b) = w1p
2
1t + w2p

2
2t + w3p1tp2t + w4p1t + w5p2t + b.

We also define the squared error

E(w1, w2, w3, , w4, w5, b) =
T∑
t=1

(yt − ŷt)
2.

1. (6 pts) Derive the gradient vector ∇E in a compact matrix form.

2. (4 pts) Derive the Hessian matrix H = ∇2E and explain why it is symmetric positive
semi-definite.

3. (2 pts) Give one numerical linear algebra reason why the structure of H is helpful when
iterating using Newton-Raphson’s optimizer.
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Question 8 — SVD and Best Rank-One Approximation

(14 points)

Let

A =

1 0
0 1
1 1

 ,

with

ATA =

(
2 1
1 2

)
,

whose eigenvalues and corresponding unit eigenvectors are given by

λ1 = 3, v1 =
1√
2

(
1

1

)
, λ2 = 1, v2 =

1√
2

(
1

−1

)
.

Hint: You may use these facts directly.

1. (8 pts) Compute an SVD A = UΣV T (you may work through ATA). Keep radicals
and do not over-simplify.

2. (4 pts) Write A as a sum of rank-one matrices using your SVD.

3. (2 pts) Write the closest rank-one approximation to A in Frobenius norm.
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