King Fahd University of Petroleum and Minerals Department of Mathematics

Math 557 Applied Linear Algebra

Syllabus (Term 251) Dr. Slim Belhaiza

Title: Math 557 Applied Linear Algebra

Credit: 3-0-3

Lecture Notes*: MATH 557: Advanced Linear Algebra, by Dr. Slim Belhaiza, 2025.

Textbook: Numerical Linear Algebra and Matrix Factorization, by Prof. Tom Lyche, SPRINGER, 2020.

Reference Textbook: Numerical Linear Algebra with Application, by Prof. William Ford, ELSEVIER, 2015.

Description: Basic concepts from linear algebra and numerical analysis. Direct methods for large, sparse linear systems, Cholesky and LU factorizations. Regularization of ill-conditioned least squares problems. SVD and QR factorizations. Sensitivity and conditioning of linear systems and least square problems. Stationary and non-stationary iterative methods, multigrid methods. Matrix theory, including spectral decompositions and eigenvalue perturbation theory. Eigenvalue and QR algorithm, and computations of SVD. Applications.

Learning Outcome: Upon successful completion of this course, a student should be able to:

- 1. Apply fundamental numerical linear algebraic concepts.
- 2. Estimate stability of solutions to linear algebraic equations & eigenvalue problems.
- 3. Utilize factorizations for efficiently solving linear systems and least squares problems.
- 4. Use the underlying principles of iterative algorithms for computing and selecting eigenvalues and finding singular values.
- 5. Estimate the speed of convergence and computational complexity of the selected numerical algorithms.

Main objectives:

- 1. Discuss linear algebra techniques for matrix factorization.
- 2. Study computation of eigenvalues, least squares problems, and error analysis.
- 3. Discuss selected applications in statistics and optimization.

Grading Policy:

1. Midterm Exam	Material: TBA Date: TBA Place: TBA	20% (60 points)
2. Project	Material: Date: Place:	20% (60 points)
3. Final Exam	Material: (Comprehensive) Date: TBA Place: TBA	35% (105 points)
4. Class Work	i) Homeworks: Theoretical and practical assignments.	20% (60 points)
	ii) Class Activities: Class participation and attendance.	5% (15 points)

Exam Questions: The questions of the common exams are based on examples, homework, theoretical and practical problems.

Attendance: Attendance is a University Requirement. A DN grade will be awarded to any student with 9 unexcused absences.

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

Week	Sections in Lecture Notes	Topics	
1		Review of Matrices	
	1.1	CR Factorization	
2	1.2	Spectral Factorization	
	1.3	LU Elimination	
3	1.4	Diagonalization	
	1.5	Cholesky Factorization	
4	1.6	Singular Vector Decomposition	
	1.7	Principal Component Analysis	
5	1.8	Generalized Eigenvalues and Singular Values	
	1.9	Non-Negative Matrix Factorization	
6	2.1	Pseudo-Inverse Matrix and Gram-Schmidt Algorithm	
	2.4	Changes in A ⁻¹ and A ⁺	
7	2.5	Changes in Eigenvalues and Singular Values	
8	2.7	Matrix Completion	
	2.8	Clustering and K-Means	
9	3.1	The Error Function	
		Project Phase I	
10	3.2	Gradient Methods	
	3.2	Conjugate Gradient Algorithm	
11	3.3	Activation Functions	
		Project Phase II	
12	3.4	Backpropagation	
	3.5	Learning and training	
13	3.6	Pattern Recognition	
14	Catch-Up and Review Classes		
15	Project Phase III		