Math559: Numerical Linear Algebra Midterm Exam

28th October 2024 at $7{:}00\mathrm{pm}^1$

^aDuration 120 minutes

NAME:

KFUPM ID:

Question 1 (8 points)

a. For the given matrix

$$A = \left(\begin{array}{cc} 2 & 2\\ 1 & 3 \end{array}\right),$$

find X and Λ such that the diagonalization of $A = X\Lambda X^{-1}$.

b. Show that if $Ax = \lambda x$ and $Ay = \Lambda y$, then $A(x + y) = \lambda(x + y)$.

c. Illustrate the statement in (b) on the two eigenvalues of A.

Preprint submitted to Dr. Slim Belhaiza (c)

October 28, 2024

Question 2 (5 points)

Given the matrix:

$$A = \left(\begin{array}{cc} 3 & 1\\ 1 & 3 \end{array}\right),$$

find the inverse of $M = A - uv^t$, where $u^t = (1 \ 1)$ and $v^t = (2 \ 1)$.

N.B.: You have to use the SMW formula seen in class.

Question 3 (5 points)

Consider the matrix

$$A = \left(\begin{array}{cc} 4 & 1\\ 1 & 5 \end{array}\right).$$

a. Starting with an initial $U_0^t = (1, 1)$, detail the first full iterations that would solve:

minimize
$$||A - UV||_F^2$$
, with $U, V \ge 0$.

b. What is the rank-one matrix A_1 approximating A reached?

Question 4 (10 points)

a. Find the pseudo-inverse matrix A^+ for the given matrix:

$$A = \left(\begin{array}{cc} 6 & 4\\ 3 & 2 \end{array}\right).$$

b. For $b^t = (4 \ 2)$, **show** that $x^+ = A^+ b$ is the least squares solution to Ax = b.

Question 5 (5 points)

If two matrices A and B are factorized using GSVD where

$$U_{a} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} , \quad U_{b} = \begin{pmatrix} \sqrt{2} & -1 \\ 1 & \sqrt{2} \end{pmatrix} , \quad \Sigma_{a} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{\sqrt{2}}{\sqrt{3}} \end{pmatrix} , \quad \Sigma_{b} = \begin{pmatrix} \frac{\sqrt{2}}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} \end{pmatrix} ,$$

and $Z = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} ,$

then $\sqrt{3}(A+B) = ?$

Question 6 (7 points)

Consider the matrix A such that:

$$A = \left(\begin{array}{rr} -1 & 3\\ 1 & 2 \end{array}\right).$$

- **a.** Perform manually the Gram-Schmidt factorization A = QR.
- **b.** Verify that your solution satisfies the mathematical conditions:

$$A^{t}A = R^{t}R$$
 and $A^{-1} = R^{-1}Q^{t}$.