KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES

SEMESTER 211/ 2021

MATH 564

Stochastic Analysis in Finance

Instructor: Dr. Boubaker Smii

Book:

- T. Mikosch. Elementary Stochastic Calculus with Finance in View. World Scientific Publishing Co. Pte. Ltd. 1998.
- **S.M.** Ross*. Introduction to Probability Models, 10th Edition. Academic Press, 2010.

<u>Course Description:</u> Stochastic processes, Gaussian processes, Brownian motion, Itô stochastic integral, the Itô lemma. Introduction to stochastic differential equations, Geometric Brownian motion, financial examples. Feynman-Kac formula, Girsanov Formula and application to Black Scholes PDE and formula.

Pre-requisite: Graduate Standing

COURSE OBJECTIVES

Stochastic processes and stochastic differential equations play a basic and steadily growing role in the description of phenomena occurring in the natural, technical and economical world.

The main objectives of the current course are:

- * Provide the students with the basic mathematical instruments for the understanding of this important area of mathematics.
- * Give them access to a very active area of contemporary mathematical research.
- * Put them in a position to actively handle problems arising from real world applications.

COURSE OUTCOMES

- *Students will be able to analyse and solve some stochastic differential equations.
- *They will have the basis for profitably attending future lectures related to more advanced topics and use SDE's in research, both at universities and industrial institutions.
- * They will be at ease in handling problems of stochastic analysis for modeling in different application areas such as financial mathematics.

Syllabus:

Week	Date	Section	
1	Aug.29-Sep.2	1	1.1 Sample Spaces and Events, Probabilities
			defined on Events.
			1.2 Conditional Probabilities, Independent
			events, Bayes's Formula.
2	Sep.5-9	2	2. Random variables:
			2.1. Discrete random variables.
			2.2. Continuous random variables
			2.2. Expectation of a random variable
3	Sep.12-16	3	3.1. Independence and Dependence of random
			variables.
		_	3.2. Conditional Expectation.
4	Sep.19- 23*	4	4.1. Stochastic processes, Gaussian processes
	September 23		National day
5	Sep. 26- 30	4	4.2. Brownian motion: Defining properties
			4.3. Processes derived from Brownian motion
6	Oct. 3-7	4	4.4. Geometric Brownian motion.
			4.4. Applications of Geometric Brownian motion
7	Oct. 10-14	5	5.1. The Riemann-Steiltjes integral
			5.2. Itô stochastic integral: A motivating example
8	Oct.17-21	5	5.3. Itô stochastic integral for simple processes
9	Oct.24-28	6	6.1. Itô formula: A simple version of the Itô lemma
10	Oct.31-Nov.4	6	6.2. Itô lemma and applications
11	Nov.7-11	7	7.1. Stochastic Differential equations (SDEs)
		_	
12	Nov. 14- 18	7	7.2. Solving SDEs
13	Nov. 21-25	7	7.3. Linear stochastic differential equations
			7.4. The Ornstein Uhlenbeck process
	Nov. 28-Dec.2		Midterm Break: Nov. 28- Dec.2
14	Dec. 5-9	8	8.1. Applications of Stochastic Calculus in Finance
			8.2. The Black-Scholes Option Pricing Formula
15	Dec. 12- 16	8	8.3. A Mathematical Formulation of the Option
			Pricing Problem.
	Dec. 19-20	8	Catch-Up and Review

Grading policy:
Midterm Exam: 30%

<u>Quizzes(10) & Projects(20)</u>: 30%

Final Exam: 40%