King Fahd University of Petroleum and Minerals

Department of Mathematics

SYLLABUS

Semester I: 2022-2023 (221)

Instructor: Dr. A. Bonfoh Course #: MATH 565

Title: Advanced Ordinary Differential Equations I

Textbook: Nonlinear Differential Equations and Dynamical Systems by F. Verhulst

(Second Edition, 1996. Revised 2006)

Objectives: The course aims to reinforce students' knowledge of the concepts

of existence, uniqueness, continuation, asymptotic behavior and

stability of solutions to ordinary differential equations.

Course description:

Existence, uniqueness and continuity of solutions. Linear systems, solution space, linear systems with constant and periodic coefficients. Phase space, classification of critical points, Poincaré-Bendixson theory. Stability theory of linear and almost linear systems. Stability of periodic solutions. Lyapunov's direct method and applications.

Prerequisites: MATH 435

Learning outcomes:

Upon successful completion of this course, a student should be able to:

- Solve 1st order linear systems with constant coefficients.
- Prove existence, uniqueness and continuation of solutions to 1st order linear and nonlinear systems.
- Analyze the asymptotic behavior of solutions to linear, almost linear and periodic systems.
- Obtain phase-portrait of 2 and 3-dimensional autonomous systems.
- Analyze periodic solutions by applying the Poincaré-Bendixson theorem.
- Prove stability of solutions to linear, almost linear and periodic systems not only by the method of linearization but also by the Lyapunov's direct method.

Wee k	Date	Sec.	Topics	Suggested Homework Problems
1	Aug 28 – Sep 1	1.2 1.3	Existence and uniqueness Gronwall's inequality	
2	Sep 4–8	2.1 2.2	Phase space, orbits Critical points and linearization	
3-4	Sep 11– 21	2.4	Periodic solutions First integrals and integral manifolds Evolution of a volume element, Liouville's theorem	2.1, 2.2, 2.3, 2.5, 2.7, 2.8
5	Sep 25– 29	3.1 3.2	Two-dimensional linear systems Remarks on 3-dimensional linear systems	3.1, 3.3, 3.5, 3.6, 3.7
6	Oct 2–6	3.3	Critical points of nonlinear equations Practice session	

	Oct 9 –	4.1	Bendixson's criterion	
7	13	4.2	Geometric auxiliaries, preparation for the	
			Poincaré-Bendixson theorem	
	Oct 17 –			
8	20	4.3	The Poincaré-Bendixson theorem	
9	Oct 23 –	4.4	Applications of the Poincaré-Bendixson	4.2, 4.4, 4.5, 4.6, 4.7, 4.8
	27		theorem	
			Periodic solutions in R ⁿ	
10	Oct 30 –	5.1	Simple examples	
	Nov 3	5.2	Stability of equilibrium solutions	
11	Nov 6 –	5.3	Stability of periodic solutions	
	10	5.4	Linearization	5.1, 5.4, 5.5
12	Nov 13 –	6.1	Equations with constants coefficients	
	17	6.2	Equations with coefficients which have a	
			limit	
			Equations with periodic coefficients	6.3, 6.5, 6.6, 6.7
13	Nov 20 –	7.1	Asymptotic stability of the trivial solution	
	24	7.2	Instability of the trivial solution	
		7.3	Stability of periodic solutions of	7.2, 7.3, 7.6, 7.7
			autonomous equations	
14	Dec 4–8		Lyapunov functions	
		8.3	Hamiltonian systems and systems with first	
			integrals	
15	Dec 11 –	8.4	Applications and examples	8.1, 8.4, 8.7, 8.8, 8.9
	15			
16	Dec 18		Practice session	

Grading:

Midterm Exai	m [Secs. 1.2-4.5]	35%
Homework ass	20%	
Presentations		10%
Final Exam	[Comprehensive]	35%