	King Fahd University of Petroleum and Minerals Department of Mathematics SYLLABUS				
Tuestanaton	Semester I: 2024-2025 (241)				
Instructor: Course #:	Dr. N. Tatar MATH 565				
Title:	Advanced Ordinary Differential Equations I				
The.	Advanced Ordinary Differential Equations I				
Textbook:	Nonlinear Differential Equations and Dynamical Systems by F. Verhulst				
Objectives:	(Second Edition, 1996. Revised 2006)				
Objectives:					
	The course aims to reinforce students' knowledge of the concepts of existence, uniqueness, continuation, asymptotic behavior and stability of solutions to ordinary differential equations.				
Course					
description:	Existence, uniqueness and continuity of solutions. Linear systems, solution space, linear systems with constant and periodic coefficients. Phase space, classification of critical points, Poincaré-Bendixson theory. Stability theory of linear and almost linear systems. Stability of periodic solutions. Lyapunov's direct method and applications.				
Prerequisites:					
	MATH 435				
Learning					
outcomes:	 Upon successful completion of this course, a student should be able to: Solve 1st order linear systems with constant coefficients. Prove existence, uniqueness and continuation of solutions to 1st order linear and nonlinear systems. Analyze the asymptotic behavior of solutions to linear, almost linear and periodic systems. Obtain phase-portrait of 2 and 3-dimensional autonomous systems. Analyze periodic solutions by applying the Poincaré-Bendixson theorem. Prove stability of solutions to linear and 				

 Prove stability of solutions to linear, almost linear and periodic systems not only by the method of linearization but also by the Lyapunov's direct method.

				Suggested
Week	Date	Sec	Topics	Homework
				Problems
		1.2	Existence and uniqueness	
1	Aug 25-29	1.3	Gronwall's inequality	
2	Sep 1-5	2.1	Phase space, orbits	
2		2.2	Critical points and linearization	
		2.3	Periodic solutions	
3-4	Sep 8-19	2.4	First integrals and integral manifolds	
3-4		2.5	Evolution of a volume element, Liouville's theorem	
	5 Sep 24-26	3.1	Two-dimensional linear systems	
5		3.2	Remarks on 3-dimensional linear systems	
		3.3	Critical points of nonlinear equations	
6	Sep 29-Oct			
	3		Practice session	

7	Oct 6-10	 4.1 Bendixson's criterion 4.2 Geometric auxiliaries, preparation for the Poincaré- Bendixson theorem 	
8	Oct 13-17	4.3 The Poincaré-Bendixson theorem	
9	Oct 20-24	 4.4 Applications of the Poincaré-Bendixson theorem 4.5 Periodic solutions in Rⁿ 	
10	Oct 27-31	5.1Simple examples5.2Stability of equilibrium solutions	
11	Nov 3-7	5.3 Stability of periodic solutions5.4 Linearization	
12	Nov 17-21	 6.1 Equations with constants coefficients 6.2 Equations with coefficients which have a limit 6.3 Equations with periodic coefficients 	
13	Nov 24-28	7.1 Asymptotic stability of the trivial solution	
14	Dec 1-5	8.2 Lyapunov functions8.3 Hamiltonian systems and systems with first integrals	
15	Dec 8-12	8.4 Applications and examples	
16	Dec 15-16	Practice session	

Grading:

Midterm Exa	m [Secs. 1.2-4.5]	35%	
Homework as	20%		
Presentations		10%	
Final Exam	[Comprehensive]	35%	