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Problem 1: Consider the scalar product

(ϕ, ψ) =

∫ π

0

ϕ(x)ψ(x)dx and |ϕ|2 = (ϕ, ϕ)1.

Consider the functions

en(x) = cos(nx) and em(x) = cos(mx), n,m ∈ N,

1.)a.)(5pts) Show that (e0, em) = 0 and (en, em) = 0, ∀n 6= m.

b.)(5pts) Compute |e0|
2 and |en|

2, ∀n 6= 0.
2.)(10pts)Use the functions en(x) and the spectral properties of the Laplace operator to
deduce from part 1. an orthnormal and complete basis of L2(0, π). Justify your answer
clearly.

Hint: You may need the relation cosα cos β = 1
2
[cos(α + β) + cos(α− β)].

Solution:
1.)a.)• Assume n 6= 0. We have

(e0, em) =

∫ π

0

cosmxdx =

[
sinmx

m

]π

0

= 0.

• Assume m 6= 0, m 6= 0 and n 6= m. We have

(en, em) =

∫ π

0

cosnx cosmxdx =
1

2

∫ π

0

[cos(n−m)x+ cos(n+m)x]dx

=
1

2

[
sin(n−m)x

n−m
+

sin(n+m)x

n+m

]π

0

= 0.

b.)• We have

|e0|
2 =

∫ π

0

e20(x)dx =

∫ π

0

dx = π

• Assume n 6= 0

|en(x)|
2 =

∫ π

0

e2n(x)dx =

∫ π

0

cos2(nx)dx =
1

2

∫ π

0

[1 + cos(2nx)]dx

=
1

2

[

x+
sin(2nx)

2n

]π

0

=
π

2
.

2.) We define the Laplace operator

A = −
d2

dx2
: V = {ϕ ∈ H2(0, π), ϕ′(0) = ϕ′(π) = 0} → L2(0, 1).

This operator A : V̇ → L̇2(0, 1) is self-adjoint, strictly positive with compact inverse. There
exists a complete orthormal basis {w0, wn}n=1,2,.. of L

2(0, 1), made of eigenfunctions of A,
that is,

Awn(x) = λnwn(x).

We finally set w0(x) =
1√
π
and wn(x) =

√
2
π
en(x).
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Problem 2: Let Ω be an open bounded domain of R3 of class C2.
1.)(6pts) Consider the Poisson problem







−∆u+ 2u = f,

∂u

∂n
|∂Ω = 0.

(1)

What do you know about the existence and uniqueness of a weak solution u of (1)?. What
is the regularity of u f ∈ L2(Ω)?
2.) Consider the Poisson problem 





−∆u = f,

∂u

∂n
|∂Ω = 0.

(2)

a.)(3pts) Integrate (2) over Ω and deduce a necessary condition on f for the existence of a
solution u to (2).
b.)(5pts) What do you know about the existence, uniqueness and the regularity of a weak
solution u of (2) if f ∈ L2(Ω).?
3.)(6pts) Consider the Poisson problem

{

−∆u = f,

u|∂Ω = 0.
(3)

What do you know about the existence and uniqueness of a weak solution u of (3)?. What
is the regularity of u f ∈ L2(Ω)?

Solution:
1.) For any f ∈ (H1(Ω))′, there exists a unique weak solution u ∈ H1(Ω) to the Poisson
problem (1). If f ∈ L2(Ω), then u ∈ {ϕ ∈ H2(Ω), ∂u

∂n
|∂Ω = 0}.

2.)a.) A necessary condition for the existence of a solution is
∫

Ω
f(x)dx = 0. To see this, we

integrate (2) over Ω, and we find

−

∫

Ω

∆udx

︸ ︷︷ ︸

=
∫
Ω
∇u,∇1dx=0

=

∫

Ω

f(x)dx

b.) For any f ∈ (Ḣ1(Ω))′, there exists a unique weak solution u ∈ Ḣ1(Ω). If f ∈ L̇2(Ω),
then u ∈ {ϕ ∈ Ḣ2(Ω), ∂u

∂n
|∂Ω = 0}.

3.) For any f ∈ H−1(Ω), there exists a unique weak solution u ∈ H1
0 (Ω) of the Poisson

problem (3). If f ∈ L2(Ω), then u ∈ H2(Ω) ∩H1
0 (Ω).
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Problem 3: Let Ω be an open bounded domain of R3 and consider the following initial and
boundary value problem:







∂ρ

∂t
−∆ρ + g(ρ) = f,

ρ|t=0 = ρ0,

ρ|∂Ω = 0.

(4)

We assume that the nonlinear function g ∈ C1(R) satisfies the condition:

g(0) = 0, ‖∇g(ρ)‖ ≤ ‖∆ρ‖, where ‖ϕ‖2 =

∫

Ω

ϕ2(x)dx. (5)

We assume that f ∈ L2(0, T, L2(Ω)), for any T > 0.
We admit that, if ρ0 ∈ H1

0 (Ω), then Problem (4) has an approximate local solution ρm(t),
∀t ∈ [0, Tm), for some Tm > 0 [Do not prove the existence of ρmρmρm] .

1.(10 pts) Show that ρm ∈ L∞(0, T ;H1
0(Ω)) ∩ L

2(0, T ;H2(Ω) ∩H1
0(Ω)), for any T > 0.

2.(10 pts) Explain how you can pass to the limit m → ∞ in the term g(ρm), given that
‖dρm

dt
‖L2(0,T ;L2(Ω)) ≤ C (uniformly in m).

Solution:
1. We have

∂ρm

∂t
−∆ρm + Pmg(ρm) = Pmf. (6)

We multiply (6) by −∆ρm, integrate over Ω and we deduce

1

2

d

dt
‖∇ρm‖

2 + ‖∆ρm‖
2 +

∫

Ω

∇g(ρm).∇ρmdx−

∫

∂Ω

g(φm)
∂

∂n

∂ρm

∂t
dx

︸ ︷︷ ︸

=0, since g(0)=0

= −

∫

Ω

Pmf∆ρmdx = 0.

(7)

|

∫

Ω

∇g(ρm).∇ρmdx| ≤ ‖∇g(ρm)‖‖∇ρm‖ ≤ ‖∆ρm‖‖‖∇ρm‖ ≤
1

4
‖∆ρm‖

2 + ‖∇ρm‖
2

|

∫

Ω

Pmf∆ρmdx| ≤ ‖f‖‖∆ρm‖ ≤
1

4
‖∆ρm‖

2 + ‖f‖2.

We deduce from (7) that

d

dt
‖∇ρm‖

2 + ‖∆ρm‖
2 ≤ 2‖∇ρm‖

2 + 2‖f‖2. (8)

We can derive from that, if ‖ρ0‖ ≤ R, then

‖ρm‖L∞(0,T ;H1
0
(Ω)) = sup

t∈[0,T ]

‖∇ρm(t)‖ ≤ C(R, T ), (9)

‖ρm‖
2
L2(0,T ;H2∩H1

0
) =

∫ T

0

‖∆ρm‖
2dt ≤ C(R, T ), . (10)

2. We deduce from (5) and (10) that
∫ T

0
‖g(ρm)‖

2
H1

0

dt ≤ C(R, T ), and then dρm
dt

∈ L2(0, T ;L2)

(deduced from (4)). There exists a subsequence {ρm}m such that ρm → ρ strongly in
L2(0, T ;H1

0(Ω)) and ρm(x, t) → ρ(x, t) a.e. in Ω× (0, T ). As g is continuous, it follows that

Pmg(ρm)⇀ g(ρ) in L2(0, T,H1
0 (Ω)) weakly.
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Problem 4: Let Ω be an open bounded domain of R2, and consider the following initial
and boundary value problem: 





∂ρ

∂t
−∆ρ + g(ρ) = 0,

∂ρ

∂n
|∂Ω = 0,

ρ|t=0 = ρ0.

(11)

We assume that the function g ∈ C1(R) satisfies the conditions:

|g′(u)| ≤ 1 + |u|p, and

∫

Ω

|u|4pdx ≤ 1, for some p > 0. (12)

Let
H = {ϕ ∈ H1(Ω),

∫

Ω

ϕ(x)dx = 0},

V =

{

ϕ ∈ H2(Ω),
∂ρ

∂n
|∂Ω = 0,

∫

Ω

ϕ(x)dx = 0

}

.

1.(10 pts) We assume that ρ0 ∈ V . Show that ρ ∈ L∞(0, T ;V ), ∀T > 0.
Hint: You may multiply the equation by −∆ ∂u

∂t
.

2.a.)(6 pts) Show that dρ

dt
∈ L2(0, T ;H).

b.) (4 pts)Assume u ∈ L2(0, T ;H3 ∩ V ). What can you state about the continuity of the
map t→ u(t)?

Solution:
1. We multiply the problem by −∆∂ρ

∂t
, integrate over Ω and we find

1

2

d

dt
‖∆ρ‖2 + ‖∇

∂ρ

∂t
‖2 +

∫

Ω

g′(ρ)∇ρ.∇
∂ρ

∂t
dx−

∫

∂Ω

g(φm)
∂

∂n

∂ρm

∂t
dx

︸ ︷︷ ︸

=0, since ∂
∂n

∂ρm
∂t

=0

= 0, (13)

But, ‖g′(ρ)‖4
L4 ≤ c

∫

Ω
(1 + |ρ|4p)dx ≤ C =⇒ ‖g′(ρ)‖L4 ≤ C, and
∫

Ω

|g′(ρ)||∇ρ||∇
∂ρ

∂t
|dx ≤ ‖g′(ρ)‖L4‖∇ρ‖L4‖∇

∂ρ

∂t
‖L2

≤
1

2
‖∇

∂ρ

∂t
‖2 + c‖∆ρ‖2, (14)

We deduce from (13) and (14) that

d

dt
‖∆ρ‖2 + ‖∇

∂ρ

∂t
‖2 ≤ c‖∆ρ‖2. (15)

If ‖∆ρ0‖ ≤ R, the we can deduce from that

d

dt
‖∆ρ‖2 ≤ c‖∆ρ‖2 =⇒by Gromwall inequality ‖ρ‖L∞(0,T ;V ) ≤ C,

2.)a.) Integrate (15) =⇒ ‖∆ρ(t)‖2 +

∫ t

0

‖∇
∂ρ

∂t
‖2ds ≤ ‖∆ρ0‖

2 + c

∫ T

0

‖∆ρ‖2ds ≤ C(T )

=⇒ ‖
∂ρ

∂t
‖L2(0,T ;H) ≤ C.

b.) u ∈ L2(0, T ;H3 ∩ V ) and ∂ρ

∂t
∈ L2(0, T ;H) =⇒ u ∈ C([0, T ], V ).
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Problem 5: Let Ω be an open bounded set of R3, with smooth boundary ∂Ω. We consider
the initial and boundary value problem







∂2u

∂t2
−∆

∂u

∂t
−∆u+ g(u) = f,

u|t=0 = u0, ut|t=0 = u1,

u|∂Ω = 0.

(16)

We assume that g satisfies the following condition

|g(s)− g(r)| ≤ |s− r|(|s|4 + |r|4), ∀s, r ∈ R, (17)

We admit that, if (u0, u1) ∈ H1
0 (Ω)× L2(Ω), then the problem possesses at least one weak

solution u and, for any T > 0, there is a constant C(T ) such that

‖∇u(t)‖+ ‖
∂u

∂t
(t)‖ ≤ C(T ), ∀t ∈ [0, T ], where ‖ϕ‖2 =

∫

Ω

ϕ(x)2dx.

1.(5 pts) Let u1 and u2 be two solutions of Problem 16. Let w = u1 − u2.

Write the problem satisfied by w.
2.(15 pts) Multiply by ∂w

∂t
and show that ‖∇w(t)‖2 + ‖∂w

∂t
(t)‖2 = 0, ∀t ∈ [0, T ].

Solution:
1. We have 





wtt −∆wt −∆w + g(u1)− g(u2) = 0,

w|t=0 = 0, wt|t=0 = 0,

w|∂Ω = 0,

(18)

2. We multiply the first equation of (18) by dw
dt
, and we integrate over Ω, and we deduce

1

2

d

dt
[‖
dw

dt
‖2 + ‖∇w‖2] + ‖∇

dw

dt
‖2 ≤

∫

Ω

|g(u1)− g(u2)||
dw

dt
|dx,

We have ∫

Ω

|g(u1)− g(u2)||
dw

dt
|dx ≤

∫

Ω

(|u1|
4 + |u2|

4)
︸ ︷︷ ︸

∈L
3
2

|w|
︸︷︷︸

∈L6

|
dw

dt
|

︸︷︷︸

∈L6

dx

≤ c(‖u1‖
4
L6(Ω) + ‖u2‖

4
L6(Ω))‖w‖L6(Ω)‖∇

dw

dt
‖

≤ c(‖∇u1‖
4 + ‖∇u2‖

4)‖∇w‖‖∇
dw

dt
‖

≤
1

2
‖∇

dw

dt
‖2 + (‖∇u1‖

8 + ‖∇u2‖
8)‖∇w‖2.

Now, we notice that ‖∇u1(t)‖
8 + ‖∇u2(t)‖

8 ≤ C(T ), ∀t ∈ [0, T ]. Thus, we get that

d

dt

(

‖
dw

dt
‖2 + ‖∇w‖2

)

≤ C

(

‖
dw

dt
‖2 + ‖∇w‖2

)

. (19)

We apply the Gronwall’s lemma and we find

‖
dw

dt
(t)‖2 + ‖∇w(t)‖2 ≤ eCT

(

‖
dw

dt
(0)‖2 + ‖∇w(0)‖2

)

︸ ︷︷ ︸

=0

, ∀t ∈ [0, T ].

=⇒ ‖dw
dt
(t)‖2 + ‖∇w(t)‖2 = 0, ∀t ∈ [0, T ].
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