King Fahd University of Petroleum and Minerals Department of Mathematics Math 569 Final Exam The First Semester of 2023-2024 (231) Time Allowed: 180min

Name:

ID number:

Textbooks are not authorized in this exam

Problem #	Marks	Maximum Marks
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1: Consider the scalar product

$$(\varphi, \psi) = \int_0^\pi \varphi(x)\psi(x)dx$$
 and $|\varphi|^2 = (\varphi, \varphi)_1.$

Consider the functions

$$e_n(x) = \cos(nx)$$
 and $e_m(x) = \cos(mx)$, $n, m \in \mathbb{N}$,

1.)a.)(5pts) Show that $(e_0, e_m) = 0$ and $(e_n, e_m) = 0$, $\forall n \neq m$.

b.)(5pts) Compute $|e_0|^2$ and $|e_n|^2$, $\forall n \neq 0$.

2.)(10pts)Use the functions $e_n(x)$ and the spectral properties of the Laplace operator to deduce from part 1. an orthnormal and complete basis of $L^2(0,\pi)$. Justify your answer clearly.

Hint: You may need the relation $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)].$

Solution:

1.)a.)• Assume $n \neq 0$. We have

$$(e_0, e_m) = \int_0^\pi \cos mx dx = \left[\frac{\sin mx}{m}\right]_0^\pi = 0.$$

• Assume $m \neq 0, m \neq 0$ and $n \neq m$. We have

$$(e_n, e_m) = \int_0^\pi \cos nx \cos mx dx = \frac{1}{2} \int_0^\pi [\cos(n-m)x + \cos(n+m)x] dx$$
$$= \frac{1}{2} \left[\frac{\sin(n-m)x}{n-m} + \frac{\sin(n+m)x}{n+m} \right]_0^\pi = 0.$$

b.)• We have

$$|e_0|^2 = \int_0^{\pi} e_0^2(x) dx = \int_0^{\pi} dx = \pi$$

• Assume $n \neq 0$

$$|e_n(x)|^2 = \int_0^{\pi} e_n^2(x) dx = \int_0^{\pi} \cos^2(nx) dx = \frac{1}{2} \int_0^{\pi} [1 + \cos(2nx)] dx$$
$$= \frac{1}{2} \left[x + \frac{\sin(2nx)}{2n} \right]_0^{\pi} = \frac{\pi}{2}.$$

2.) We define the Laplace operator

$$A = -\frac{d^2}{dx^2} : V = \{\varphi \in H^2(0,\pi), \varphi'(0) = \varphi'(\pi) = 0\} \to L^2(0,1)$$

This operator $A: \dot{V} \to \dot{L}^2(0,1)$ is self-adjoint, strictly positive with compact inverse. There exists a complete orthormal basis $\{w_0, w_n\}_{n=1,2,..}$ of $L^2(0,1)$, made of eigenfunctions of A, that is,

$$Aw_n(x) = \lambda_n w_n(x).$$

We finally set $w_0(x) = \frac{1}{\sqrt{\pi}}$ and $w_n(x) = \sqrt{\frac{2}{\pi}}e_n(x)$.

Problem 2: Let Ω be an open bounded domain of \mathbb{R}^3 of class \mathcal{C}^2 . **1.**)(6pts) Consider the Poisson problem

$$\begin{cases} -\Delta u + 2u = f, \\ \frac{\partial u}{\partial n}|_{\partial\Omega} = 0. \end{cases}$$
(1)

What do you know about the existence and uniqueness of a weak solution u of (1)?. What is the regularity of $u f \in L^2(\Omega)$?

2.) Consider the Poisson problem

$$\begin{cases}
-\Delta u = f, \\
\frac{\partial u}{\partial n}|_{\partial\Omega} = 0.
\end{cases}$$
(2)

a.)(3pts) Integrate (2) over Ω and deduce a necessary condition on f for the existence of a solution u to (2).

b.)(5pts) What do you know about the existence, uniqueness and the regularity of a weak solution u of (2) if $f \in L^2(\Omega)$?

3.)(6pts) Consider the Poisson problem

$$\begin{cases} -\Delta u = f, \\ u|_{\partial\Omega} = 0. \end{cases}$$
(3)

What do you know about the existence and uniqueness of a weak solution u of (3)?. What is the regularity of $u f \in L^2(\Omega)$?

Solution:

1.) For any $f \in (H^1(\Omega))'$, there exists a unique weak solution $u \in H^1(\Omega)$ to the Poisson problem (1). If $f \in L^2(\Omega)$, then $u \in \{\varphi \in H^2(\Omega), \frac{\partial u}{\partial n}|_{\partial \Omega} = 0\}$.

2.)a.) A necessary condition for the existence of a solution is $\int_{\Omega} f(x) dx = 0$. To see this, we integrate (2) over Ω , and we find

$$\underbrace{-\int_{\Omega} \Delta u dx}_{=\int_{\Omega} \nabla u, \nabla 1 dx=0} = \int_{\Omega} f(x) dx$$

b.) For any $f \in (\dot{H}^1(\Omega))'$, there exists a unique weak solution $u \in \dot{H}^1(\Omega)$. If $f \in \dot{L}^2(\Omega)$, then $u \in \{\varphi \in \dot{H}^2(\Omega), \frac{\partial u}{\partial n}|_{\partial \Omega} = 0\}$.

3.) For any $f \in H^{-1}(\Omega)$, there exists a unique weak solution $u \in H^1_0(\Omega)$ of the Poisson problem (3). If $f \in L^2(\Omega)$, then $u \in H^2(\Omega) \cap H^1_0(\Omega)$.

Problem 3: Let Ω be an open bounded domain of \mathbb{R}^3 and consider the following initial and boundary value problem:

$$\begin{cases}
\frac{\partial \rho}{\partial t} - \Delta \rho + g(\rho) = f, \\
\rho|_{t=0} = \rho_0, \\
\rho|_{\partial \Omega} = 0.
\end{cases}$$
(4)

We assume that the nonlinear function $g \in \mathcal{C}^1(\mathbb{R})$ satisfies the condition:

$$g(0) = 0, \quad \|\nabla g(\rho)\| \le \|\Delta\rho\|, \qquad \text{where } \|\varphi\|^2 = \int_{\Omega} \varphi^2(x) dx. \tag{5}$$

We assume that $f \in L^2(0, T, L^2(\Omega))$, for any T > 0.

<u>We admit that</u>, if $\rho_0 \in H_0^1(\Omega)$, then Problem (4) has an approximate local solution $\rho_m(t)$, $\forall t \in [0, T_m)$, for some $T_m > 0$ [**Do not prove the existence of** ρ_m].

1.(10 pts) Show that $\rho_m \in L^{\infty}(0,T; H_0^1(\Omega)) \cap L^2(0,T; H^2(\Omega) \cap H_0^1(\Omega))$, for any T > 0. **2**.(10 pts) **Explain** how you can pass to the limit $m \to \infty$ in the term $g(\rho_m)$, given that $\|\frac{d\rho_m}{dt}\|_{L^2(0,T;L^2(\Omega))} \leq C$ (uniformly in m).

Solution:

1. We have

$$\frac{\partial \rho_m}{\partial t} - \Delta \rho_m + P_m g(\rho_m) = P_m f.$$
(6)

We multiply (6) by $-\Delta \rho_m$, integrate over Ω and we deduce

$$\frac{1}{2}\frac{d}{dt}\|\nabla\rho_m\|^2 + \|\Delta\rho_m\|^2 + \int_{\Omega}\nabla g(\rho_m) \cdot \nabla\rho_m dx - \underbrace{\int_{\partial\Omega}g(\phi_m)\frac{\partial}{\partial n}\frac{\partial\rho_m}{\partial t}dx}_{=0, \text{ since }g(0)=0} = -\int_{\Omega}P_m f\Delta\rho_m dx = 0.$$
(7)

$$\begin{split} &|\int_{\Omega} \nabla g(\rho_m) . \nabla \rho_m dx| \le \|\nabla g(\rho_m)\| \|\nabla \rho_m\| \le \|\Delta \rho_m\| \|\|\nabla \rho_m\| \le \frac{1}{4} \|\Delta \rho_m\|^2 + \|\nabla \rho_m\|^2 \\ &|\int_{\Omega} P_m f \Delta \rho_m dx| \le \|f\| \|\Delta \rho_m\| \le \frac{1}{4} \|\Delta \rho_m\|^2 + \|f\|^2. \end{split}$$

We deduce from (7) that

$$\frac{d}{dt} \|\nabla \rho_m\|^2 + \|\Delta \rho_m\|^2 \le 2\|\nabla \rho_m\|^2 + 2\|f\|^2.$$
(8)

We can derive from that, if $\|\rho_0\| \leq R$, then

$$\|\rho_m\|_{L^{\infty}(0,T;H^1_0(\Omega))} = \sup_{t \in [0,T]} \|\nabla \rho_m(t)\| \le C(R,T),$$
(9)

$$\|\rho_m\|_{L^2(0,T;H^2 \cap H^1_0)}^2 = \int_0^T \|\Delta\rho_m\|^2 dt \le C(R,T),.$$
(10)

2. We deduce from (5) and (10) that $\int_0^T ||g(\rho_m)||_{H_0^1}^2 dt \leq C(R,T)$, and then $\frac{d\rho_m}{dt} \in L^2(0,T;L^2)$ (deduced from (4)). There exists a subsequence $\{\rho_m\}_m$ such that $\rho_m \to \rho$ strongly in $L^2(0,T;H_0^1(\Omega))$ and $\rho_m(x,t) \to \rho(x,t)$ a.e. in $\Omega \times (0,T)$. As g is continuous, it follows that

$$P_m g(\rho_m) \rightharpoonup g(\rho)$$
 in $L^2(0, T, H_0^1(\Omega))$ weakly.

Problem 4: Let Ω be an open bounded domain of \mathbb{R}^2 , and consider the following initial and boundary value problem:

$$\frac{\partial \rho}{\partial t} - \Delta \rho + g(\rho) = 0,$$

$$\frac{\partial \rho}{\partial n}|_{\partial \Omega} = 0,$$

$$\rho|_{t=0} = \rho_0.$$
(11)

We assume that the function $g \in \mathcal{C}^1(\mathbb{R})$ satisfies the conditions:

$$|g'(u)| \le 1 + |u|^p$$
, and $\int_{\Omega} |u|^{4p} dx \le 1$, for some $p > 0$. (12)

Let

$$H = \{ \varphi \in H^1(\Omega), \quad \int_{\Omega} \varphi(x) dx = 0 \},$$
$$V = \left\{ \varphi \in H^2(\Omega), \ \frac{\partial \rho}{\partial n} |_{\partial \Omega} = 0, \quad \int_{\Omega} \varphi(x) dx = 0 \right\}.$$

1.(10 pts) We assume that $\rho_0 \in V$. Show that $\rho \in L^{\infty}(0,T;V), \quad \forall T > 0.$ *Hint:* You may multiply the equation by $-\Delta \frac{\partial u}{\partial t}$.

2.a.)(6 pts) Show that $\frac{d\rho}{dt} \in L^2(0,T;H)$. b.) (4 pts)Assume $u \in L^2(0,T;H^3 \cap V)$. What can you state about the continuity of the map $t \to u(t)$?

Solution:

1. We multiply the problem by $-\Delta \frac{\partial \rho}{\partial t}$, integrate over Ω and we find

$$\frac{1}{2}\frac{d}{dt}\|\Delta\rho\|^{2} + \|\nabla\frac{\partial\rho}{\partial t}\|^{2} + \int_{\Omega} g'(\rho)\nabla\rho \cdot\nabla\frac{\partial\rho}{\partial t}dx - \underbrace{\int_{\partial\Omega} g(\phi_{m})\frac{\partial}{\partial n}\frac{\partial\rho_{m}}{\partial t}dx}_{=0, \text{ since }\frac{\partial}{\partial n}\frac{\partial\rho_{m}}{\partial t}=0} = 0, \quad (13)$$

But, $\|g'(\rho)\|_{L^4}^4 \le c \int_{\Omega} (1+|\rho|^{4p}) dx \le C \Longrightarrow \|g'(\rho)\|_{L^4} \le C$, and

$$\int_{\Omega} |g'(\rho)| |\nabla \rho| |\nabla \frac{\partial \rho}{\partial t} | dx \leq ||g'(\rho)||_{L^4} ||\nabla \rho||_{L^4} ||\nabla \frac{\partial \rho}{\partial t}||_{L^2}$$
$$\leq \frac{1}{2} ||\nabla \frac{\partial \rho}{\partial t}||^2 + c ||\Delta \rho||^2, \tag{14}$$

We deduce from (13) and (14) that

$$\frac{d}{dt} \|\Delta\rho\|^2 + \|\nabla\frac{\partial\rho}{\partial t}\|^2 \le c \|\Delta\rho\|^2.$$
(15)

If $\|\Delta \rho_0\| \leq R$, the we can deduce from that

$$\frac{d}{dt} \|\Delta\rho\|^2 \le c \|\Delta\rho\|^2 \Longrightarrow^{\text{by Gromwall inequality}} \|\rho\|_{L^{\infty}(0,T;V)} \le C,$$

2.)a.) Integrate (15)
$$\Longrightarrow \|\Delta\rho(t)\|^2 + \int_0^t \|\nabla\frac{\partial\rho}{\partial t}\|^2 ds \le \|\Delta\rho_0\|^2 + c \int_0^T \|\Delta\rho\|^2 ds \le C(T)$$

 $\Longrightarrow \|\frac{\partial\rho}{\partial t}\|_{L^2(0,T;H)} \le C.$
b.) $u \in L^2(0,T;H^3 \cap V)$ and $\frac{\partial\rho}{\partial t} \in L^2(0,T;H) \Longrightarrow u \in \mathcal{C}([0,T],V).$

Problem 5: Let Ω be an open bounded set of \mathbb{R}^3 , with smooth boundary $\partial\Omega$. We consider the initial and boundary value problem

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} - \Delta \frac{\partial u}{\partial t} - \Delta u + g(u) = f, \\
u|_{t=0} = u_0, \quad u_t|_{t=0} = u_1, \\
u|_{\partial\Omega} = 0.
\end{cases}$$
(16)

We assume that g satisfies the following condition

$$|g(s) - g(r)| \le |s - r|(|s|^4 + |r|^4), \ \forall s, r \in \mathbb{R},$$
(17)

We admit that, if $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$, then the problem possesses at least one weak solution u and, for any T > 0, there is a constant C(T) such that

$$\|\nabla u(t)\| + \|\frac{\partial u}{\partial t}(t)\| \le C(T), \quad \forall t \in [0,T], \quad \text{where} \quad \|\varphi\|^2 = \int_{\Omega} \varphi(x)^2 dx.$$

1.(5 pts) Let u_1 and u_2 be two solutions of Problem 16. Let $w = u_1 - u_2$. Write the problem satisfied by w.

2.(15 pts) Multiply by $\frac{\partial w}{\partial t}$ and show that $\|\nabla w(t)\|^2 + \|\frac{\partial w}{\partial t}(t)\|^2 = 0, \forall t \in [0, T].$

Solution:

1. We have

$$\begin{cases} w_{tt} - \Delta w_t - \Delta w + g(u_1) - g(u_2) = 0, \\ w_{t=0} = 0, \quad w_t|_{t=0} = 0, \\ w_{\partial\Omega} = 0, \end{cases}$$
(18)

2. We multiply the first equation of (18) by $\frac{dw}{dt}$, and we integrate over Ω , and we deduce

$$\frac{1}{2}\frac{d}{dt}\left[\|\frac{dw}{dt}\|^2 + \|\nabla w\|^2\right] + \|\nabla \frac{dw}{dt}\|^2 \le \int_{\Omega} |g(u_1) - g(u_2)| |\frac{dw}{dt}| dx,$$

We have

$$\begin{split} \int_{\Omega} |g(u_{1}) - g(u_{2})| |\frac{dw}{dt} | dx &\leq \int_{\Omega} \underbrace{(|u_{1}|^{4} + |u_{2}|^{4})}_{\in L^{\frac{3}{2}}} \underbrace{|w|}_{\in L^{6}} \underbrace{|\frac{dw}{dt}|}_{\in L^{6}} dx \\ &\leq c(||u_{1}||^{4}_{L^{6}(\Omega)} + ||u_{2}||^{4}_{L^{6}(\Omega)}) ||w||_{L^{6}(\Omega)} ||\nabla \frac{dw}{dt}|| \\ &\leq c(||\nabla u_{1}||^{4} + ||\nabla u_{2}||^{4}) ||\nabla w|| ||\nabla \frac{dw}{dt}|| \\ &\leq \frac{1}{2} ||\nabla \frac{dw}{dt}||^{2} + (||\nabla u_{1}||^{8} + ||\nabla u_{2}||^{8}) ||\nabla w||^{2}. \end{split}$$

Now, we notice that $\|\nabla u_1(t)\|^8 + \|\nabla u_2(t)\|^8 \le C(T), \forall t \in [0, T]$. Thus, we get that

$$\frac{d}{dt}\left(\|\frac{dw}{dt}\|^2 + \|\nabla w\|^2\right) \le C\left(\|\frac{dw}{dt}\|^2 + \|\nabla w\|^2\right).$$
(19)

We apply the Gronwall's lemma and we find

$$\begin{aligned} \|\frac{dw}{dt}(t)\|^2 + \|\nabla w(t)\|^2 &\leq e^{CT} \underbrace{\left(\|\frac{dw}{dt}(0)\|^2 + \|\nabla w(0)\|^2 \right)}_{=0}, \quad \forall t \in [0,T]. \end{aligned}$$