King Fahd University of Petroleum and Minerals
Department of Mathematics
Math 569 Final Exam
The First Semester of 2023-2024 (231)
Time Allowed: 180min
Name: \quad ID number:

Textbooks are not authorized in this exam

Problem \#	Marks	Maximum Marks
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1: Consider the scalar product

$$
(\varphi, \psi)=\int_{0}^{\pi} \varphi(x) \psi(x) d x \quad \text { and } \quad|\varphi|^{2}=(\varphi, \varphi)_{1} .
$$

Consider the functions

$$
e_{n}(x)=\cos (n x) \quad \text { and } \quad e_{m}(x)=\cos (m x), \quad n, m \in \mathbb{N}
$$

1.) a.) (5pts) Show that $\left(e_{0}, e_{m}\right)=0$ and $\left(e_{n}, e_{m}\right)=0, \forall n \neq m$.
b.)(5pts) Compute $\left|e_{0}\right|^{2}$ and $\left|e_{n}\right|^{2}, \forall n \neq 0$.
2.) (10pts)Use the functions $e_{n}(x)$ and the spectral properties of the Laplace operator to deduce from part 1. an orthnormal and complete basis of $L^{2}(0, \pi)$. Justify your answer clearly.

Hint: You may need the relation $\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]$.

Solution:

1.)a.)• Assume $n \neq 0$. We have

$$
\left(e_{0}, e_{m}\right)=\int_{0}^{\pi} \cos m x d x=\left[\frac{\sin m x}{m}\right]_{0}^{\pi}=0 .
$$

- Assume $m \neq 0, m \neq 0$ and $n \neq m$. We have

$$
\begin{aligned}
\left(e_{n}, e_{m}\right) & =\int_{0}^{\pi} \cos n x \cos m x d x=\frac{1}{2} \int_{0}^{\pi}[\cos (n-m) x+\cos (n+m) x] d x \\
& =\frac{1}{2}\left[\frac{\sin (n-m) x}{n-m}+\frac{\sin (n+m) x}{n+m}\right]_{0}^{\pi}=0 .
\end{aligned}
$$

b.)• We have

$$
\left|e_{0}\right|^{2}=\int_{0}^{\pi} e_{0}^{2}(x) d x=\int_{0}^{\pi} d x=\pi
$$

- Assume $n \neq 0$

$$
\begin{aligned}
\left|e_{n}(x)\right|^{2} & =\int_{0}^{\pi} e_{n}^{2}(x) d x=\int_{0}^{\pi} \cos ^{2}(n x) d x=\frac{1}{2} \int_{0}^{\pi}[1+\cos (2 n x)] d x \\
& =\frac{1}{2}\left[x+\frac{\sin (2 n x)}{2 n}\right]_{0}^{\pi}=\frac{\pi}{2}
\end{aligned}
$$

2.) We define the Laplace operator

$$
A=-\frac{d^{2}}{d x^{2}}: V=\left\{\varphi \in H^{2}(0, \pi), \varphi^{\prime}(0)=\varphi^{\prime}(\pi)=0\right\} \rightarrow L^{2}(0,1)
$$

This operator $A: \dot{V} \rightarrow \dot{L}^{2}(0,1)$ is self-adjoint, strictly positive with compact inverse. There exists a complete orthormal basis $\left\{w_{0}, w_{n}\right\}_{n=1,2, . .}$ of $L^{2}(0,1)$, made of eigenfunctions of A, that is,

$$
A w_{n}(x)=\lambda_{n} w_{n}(x)
$$

We finally set $w_{0}(x)=\frac{1}{\sqrt{\pi}}$ and $w_{n}(x)=\sqrt{\frac{2}{\pi}} e_{n}(x)$.

Problem 2: Let Ω be an open bounded domain of \mathbb{R}^{3} of class \mathcal{C}^{2}.
1.) (6 pts) Consider the Poisson problem

$$
\left\{\begin{array}{l}
-\Delta u+2 u=f \tag{1}\\
\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0
\end{array}\right.
$$

What do you know about the existence and uniqueness of a weak solution u of (1)?. What is the regularity of $u f \in L^{2}(\Omega)$?
2.) Consider the Poisson problem

$$
\left\{\begin{array}{l}
-\Delta u=f \tag{2}\\
\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0
\end{array}\right.
$$

a.) (3pts) Integrate (2) over Ω and deduce a necessary condition on f for the existence of a solution u to (2).
b.)(5pts) What do you know about the existence, uniqueness and the regularity of a weak solution u of (2) if $f \in L^{2}(\Omega)$.?
3.) (6 pts) Consider the Poisson problem

$$
\left\{\begin{array}{c}
-\Delta u=f \tag{3}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

What do you know about the existence and uniqueness of a weak solution u of (3)?. What is the regularity of $u f \in L^{2}(\Omega)$?

Solution:

1.) For any $f \in\left(H^{1}(\Omega)\right)^{\prime}$, there exists a unique weak solution $u \in H^{1}(\Omega)$ to the Poisson problem (1). If $f \in L^{2}(\Omega)$, then $u \in\left\{\varphi \in H^{2}(\Omega),\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0\right\}$.
2.) a.) A necessary condition for the existence of a solution is $\int_{\Omega} f(x) d x=0$. To see this, we integrate (2) over Ω, and we find

$$
\underbrace{-\int_{\Omega} \Delta u d x}_{=\int_{\Omega} \nabla u, \nabla 1 d x=0}=\int_{\Omega} f(x) d x
$$

b.) For any $f \in\left(\dot{H}^{1}(\Omega)\right)^{\prime}$, there exists a unique weak solution $u \in \dot{H}^{1}(\Omega)$. If $f \in \dot{L}^{2}(\Omega)$, then $u \in\left\{\varphi \in \dot{H}^{2}(\Omega),\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0\right\}$.
3.) For any $f \in H^{-1}(\Omega)$, there exists a unique weak solution $u \in H_{0}^{1}(\Omega)$ of the Poisson problem (3). If $f \in L^{2}(\Omega)$, then $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

Problem 3: Let Ω be an open bounded domain of \mathbb{R}^{3} and consider the following initial and boundary value problem:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}-\Delta \rho+g(\rho)=f \tag{4}\\
\left.\rho\right|_{t=0}=\rho_{0} \\
\left.\rho\right|_{\partial \Omega}=0
\end{array}\right.
$$

We assume that the nonlinear function $g \in \mathcal{C}^{1}(\mathbb{R})$ satisfies the condition:

$$
\begin{equation*}
g(0)=0, \quad\|\nabla g(\rho)\| \leq\|\Delta \rho\|, \quad \text { where }\|\varphi\|^{2}=\int_{\Omega} \varphi^{2}(x) d x \tag{5}
\end{equation*}
$$

We assume that $f \in L^{2}\left(0, T, L^{2}(\Omega)\right)$, for any $T>0$.
We admit that, if $\rho_{0} \in H_{0}^{1}(\Omega)$, then Problem (4) has an approximate local solution $\rho_{m}(t)$, $\forall t \in\left[0, T_{m}\right)$, for some $T_{m}>0$ [Do not prove the existence of $\left.\boldsymbol{\rho}_{\boldsymbol{m}}\right]$.

1. (10 pts) Show that $\rho_{m} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$, for any $T>0$.
2. (10 pts) Explain how you can pass to the limit $m \rightarrow \infty$ in the term $g\left(\rho_{m}\right)$, given that $\left\|\frac{d \rho_{m}}{d t}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C$ (uniformly in m).

Solution:

1. We have

$$
\begin{equation*}
\frac{\partial \rho_{m}}{\partial t}-\Delta \rho_{m}+P_{m} g\left(\rho_{m}\right)=P_{m} f \tag{6}
\end{equation*}
$$

We multiply (6) by $-\Delta \rho_{m}$, integrate over Ω and we deduce

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\nabla \rho_{m}\right\|^{2}+\left\|\Delta \rho_{m}\right\|^{2}+\int_{\Omega} \nabla g\left(\rho_{m}\right) \cdot \nabla \rho_{m} d x-\underbrace{\int_{\partial \Omega} g\left(\phi_{m}\right) \frac{\partial}{\partial n} \frac{\partial \rho_{m}}{\partial t} d x}_{=0, \text { since } g(0)=0}=-\int_{\Omega} P_{m} f \Delta \rho_{m} d x=0 \tag{7}\\
& \quad\left|\int_{\Omega} \nabla g\left(\rho_{m}\right) \cdot \nabla \rho_{m} d x\right| \leq\left\|\nabla g\left(\rho_{m}\right)\right\|\left\|\nabla \rho_{m}\right\| \leq\left\|\Delta \rho_{m}\right\|\| \| \nabla \rho_{m}\left\|\leq \frac{1}{4}\right\| \Delta \rho_{m}\left\|^{2}+\right\| \nabla \rho_{m} \|^{2} \\
& \quad\left|\int_{\Omega} P_{m} f \Delta \rho_{m} d x\right| \leq\|f\|\left\|\Delta \rho_{m}\right\| \leq \frac{1}{4}\left\|\Delta \rho_{m}\right\|^{2}+\|f\|^{2}
\end{align*}
$$

We deduce from (7) that

$$
\begin{equation*}
\frac{d}{d t}\left\|\nabla \rho_{m}\right\|^{2}+\left\|\Delta \rho_{m}\right\|^{2} \leq 2\left\|\nabla \rho_{m}\right\|^{2}+2\|f\|^{2} \tag{8}
\end{equation*}
$$

We can derive from that, if $\left\|\rho_{0}\right\| \leq R$, then

$$
\begin{align*}
\left\|\rho_{m}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)} & =\sup _{t \in[0, T]}\left\|\nabla \rho_{m}(t)\right\| \leq C(R, T) \tag{9}\\
\left\|\rho_{m}\right\|_{L^{2}\left(0, T ; H^{2} \cap H_{0}^{1}\right)}^{2} & =\int_{0}^{T}\left\|\Delta \rho_{m}\right\|^{2} d t \leq C(R, T), \tag{10}
\end{align*}
$$

2. We deduce from (5) and (10) that $\int_{0}^{T}\left\|g\left(\rho_{m}\right)\right\|_{H_{0}^{1}}^{2} d t \leq C(R, T)$, and then $\frac{d \rho_{m}}{d t} \in L^{2}\left(0, T ; L^{2}\right)$ (deduced from (4)). There exists a subsequence $\left\{\rho_{m}\right\}_{m}$ such that $\rho_{m} \rightarrow \rho$ strongly in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\rho_{m}(x, t) \rightarrow \rho(x, t)$ a.e. in $\Omega \times(0, T)$. As g is continuous, it follows that

$$
P_{m} g\left(\rho_{m}\right) \rightharpoonup g(\rho) \text { in } L^{2}\left(0, T, H_{0}^{1}(\Omega)\right) \text { weakly. }
$$

Problem 4: Let Ω be an open bounded domain of \mathbb{R}^{2}, and consider the following initial and boundary value problem:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}-\Delta \rho+g(\rho)=0 \tag{11}\\
\left.\frac{\partial \rho}{\partial n}\right|_{\partial \Omega}=0 \\
\left.\rho\right|_{t=0}=\rho_{0}
\end{array}\right.
$$

We assume that the function $g \in \mathcal{C}^{1}(\mathbb{R})$ satisfies the conditions:

$$
\begin{equation*}
\left|g^{\prime}(u)\right| \leq 1+|u|^{p}, \quad \text { and } \quad \int_{\Omega}|u|^{4 p} d x \leq 1, \quad \text { for some } p>0 \tag{12}
\end{equation*}
$$

Let

$$
\begin{aligned}
H & =\left\{\varphi \in H^{1}(\Omega), \quad \int_{\Omega} \varphi(x) d x=0\right\}, \\
V & =\left\{\varphi \in H^{2}(\Omega),\left.\quad \frac{\partial \rho}{\partial n}\right|_{\partial \Omega}=0, \quad \int_{\Omega} \varphi(x) d x=0\right\} .
\end{aligned}
$$

1. (10 pts) We assume that $\rho_{0} \in V$. Show that $\rho \in L^{\infty}(0, T ; V), \quad \forall T>0$.

Hint: You may multiply the equation by $-\Delta \frac{\partial u}{\partial t}$.
2.a.) (6 pts) Show that $\frac{d \rho}{d t} \in L^{2}(0, T ; H)$.
b.) (4 pts)Assume $u \in L^{2}\left(0, T ; H^{3} \cap V\right)$. What can you state about the continuity of the map $t \rightarrow u(t)$?

Solution:

1. We multiply the problem by $-\Delta \frac{\partial \rho}{\partial t}$, integrate over Ω and we find

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|\Delta \rho\|^{2}+\left\|\nabla \frac{\partial \rho}{\partial t}\right\|^{2}+\int_{\Omega} g^{\prime}(\rho) \nabla \rho \cdot \nabla \frac{\partial \rho}{\partial t} d x-\underbrace{\int_{\partial \Omega} g\left(\phi_{m}\right) \frac{\partial}{\partial n} \frac{\partial \rho_{m}}{\partial t} d x}_{=0, \text { since } \frac{\partial}{\partial n} \frac{\partial \rho_{m}}{\partial t}=0}=0 \tag{13}
\end{equation*}
$$

But, $\left\|g^{\prime}(\rho)\right\|_{L^{4}}^{4} \leq c \int_{\Omega}\left(1+|\rho|^{4 p}\right) d x \leq C \Longrightarrow\left\|g^{\prime}(\rho)\right\|_{L^{4}} \leq C$, and

$$
\begin{align*}
\int_{\Omega}\left|g^{\prime}(\rho)\|\nabla \rho\| \nabla \frac{\partial \rho}{\partial t}\right| d x & \leq\left\|g^{\prime}(\rho)\right\|_{L^{4}}\|\nabla \rho\|_{L^{4}}\left\|\nabla \frac{\partial \rho}{\partial t}\right\|_{L^{2}} \\
& \leq \frac{1}{2}\left\|\nabla \frac{\partial \rho}{\partial t}\right\|^{2}+c\|\Delta \rho\|^{2} \tag{14}
\end{align*}
$$

We deduce from (13) and (14) that

$$
\begin{equation*}
\frac{d}{d t}\|\Delta \rho\|^{2}+\left\|\nabla \frac{\partial \rho}{\partial t}\right\|^{2} \leq c\|\Delta \rho\|^{2} \tag{15}
\end{equation*}
$$

If $\left\|\Delta \rho_{0}\right\| \leq R$, the we can deduce from that

$$
\frac{d}{d t}\|\Delta \rho\|^{2} \leq c\|\Delta \rho\|^{2} \Longrightarrow{ }^{\text {by Gromwall inequality }}\|\rho\|_{L^{\infty}(0, T ; V)} \leq C
$$

2.) a.) Integrate (15) $\Longrightarrow\|\Delta \rho(t)\|^{2}+\int_{0}^{t}\left\|\nabla \frac{\partial \rho}{\partial t}\right\|^{2} d s \leq\left\|\Delta \rho_{0}\right\|^{2}+c \int_{0}^{T}\|\Delta \rho\|^{2} d s \leq C(T)$

$$
\Longrightarrow\left\|\frac{\partial \rho}{\partial t}\right\|_{L^{2}(0, T ; H)} \leq C
$$

b.) $u \in L^{2}\left(0, T ; H^{3} \cap V\right)$ and $\frac{\partial \rho}{\partial t} \in L^{2}(0, T ; H) \Longrightarrow u \in \mathcal{C}([0, T], V)$.

Problem 5: Let Ω be an open bounded set of \mathbb{R}^{3}, with smooth boundary $\partial \Omega$. We consider the initial and boundary value problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta \frac{\partial u}{\partial t}-\Delta u+g(u)=f \tag{16}\\
\left.u\right|_{t=0}=u_{0},\left.\quad u_{t}\right|_{t=0}=u_{1} \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

We assume that g satisfies the following condition

$$
\begin{equation*}
|g(s)-g(r)| \leq|s-r|\left(|s|^{4}+|r|^{4}\right), \quad \forall s, r \in \mathbb{R} \tag{17}
\end{equation*}
$$

We admit that, if $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$, then the problem possesses at least one weak solution u and, for any $T>0$, there is a constant $C(T)$ such that

$$
\|\nabla u(t)\|+\left\|\frac{\partial u}{\partial t}(t)\right\| \leq C(T), \quad \forall t \in[0, T], \quad \text { where } \quad\|\varphi\|^{2}=\int_{\Omega} \varphi(x)^{2} d x
$$

1. (5 pts) Let u_{1} and u_{2} be two solutions of Problem 16. Let $w=u_{1}-u_{2}$.

Write the problem satisfied by w.
2. (15 pts) Multiply by $\frac{\partial w}{\partial t}$ and show that $\|\nabla w(t)\|^{2}+\left\|\frac{\partial w}{\partial t}(t)\right\|^{2}=0, \forall t \in[0, T]$.

Solution:

1. We have

$$
\left\{\begin{array}{l}
w_{t t}-\Delta w_{t}-\Delta w+g\left(u_{1}\right)-g\left(u_{2}\right)=0 \tag{18}\\
\left.w\right|_{t=0}=0,\left.\quad w_{t}\right|_{t=0}=0 \\
\left.w\right|_{\partial \Omega}=0
\end{array}\right.
$$

2. We multiply the first equation of (18) by $\frac{d w}{d t}$, and we integrate over Ω, and we deduce

$$
\frac{1}{2} \frac{d}{d t}\left[\left\|\frac{d w}{d t}\right\|^{2}+\|\nabla w\|^{2}\right]+\left\|\nabla \frac{d w}{d t}\right\|^{2} \leq \int_{\Omega}\left|g\left(u_{1}\right)-g\left(u_{2}\right) \| \frac{d w}{d t}\right| d x
$$

We have

$$
\begin{aligned}
\int_{\Omega}\left|g\left(u_{1}\right)-g\left(u_{2}\right) \| \frac{d w}{d t}\right| d x & \leq \int_{\Omega} \underbrace{\left(\left|u_{1}\right|^{4}+\left|u_{2}\right|^{4}\right)}_{\in L^{\frac{3}{2}}} \underbrace{|w|}_{\in L^{6}} \underbrace{\left|\frac{d w}{d t}\right| d x}_{\in L^{6}} \\
& \leq c\left(\left\|u_{1}\right\|_{L^{6}(\Omega)}^{4}+\left\|u_{2}\right\|_{L^{6}(\Omega)}^{4}\right)\|w\|_{L^{6}(\Omega)}\left\|\nabla \frac{d w}{d t}\right\| \\
& \leq c\left(\left\|\nabla u_{1}\right\|^{4}+\left\|\nabla u_{2}\right\|^{4}\right)\|\nabla w\|\left\|\nabla \frac{d w}{d t}\right\| \\
& \leq \frac{1}{2}\left\|\nabla \frac{d w}{d t}\right\|^{2}+\left(\left\|\nabla u_{1}\right\|^{8}+\left\|\nabla u_{2}\right\|^{8}\right)\|\nabla w\|^{2} .
\end{aligned}
$$

Now, we notice that $\left\|\nabla u_{1}(t)\right\|^{8}+\left\|\nabla u_{2}(t)\right\|^{8} \leq C(T), \forall t \in[0, T]$. Thus, we get that

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|\frac{d w}{d t}\right\|^{2}+\|\nabla w\|^{2}\right) \leq C\left(\left\|\frac{d w}{d t}\right\|^{2}+\|\nabla w\|^{2}\right) \tag{19}
\end{equation*}
$$

We apply the Gronwall's lemma and we find

$$
\left\|\frac{d w}{d t}(t)\right\|^{2}+\|\nabla w(t)\|^{2} \leq e^{C T} \underbrace{\left(\left\|\frac{d w}{d t}(0)\right\|^{2}+\|\nabla w(0)\|^{2}\right)}_{=0}, \quad \forall t \in[0, T]
$$

$\Longrightarrow\left\|\frac{d w}{d t}(t)\right\|^{2}+\|\nabla w(t)\|^{2}=0, \quad \forall t \in[0, T]$.

