King Fahd University of Petroleum and Minerals Department of Mathematics Math 569 Midterm Exam The First Semester of 2023-2024 (231) Time Allowed: 130mn

Name: ID number:

Textbooks are not authorized in this exam

Problem $\#$	Marks	Maximum Marks
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1: Let Ω be an open bounded domain of \mathbb{R}^3 of class \mathcal{C}^3 .

1.)a.)(5pts) Explain how to obtain eigenfunctions $\{e_j(x)\}\$ and corresponding eigenvalues $\{\lambda_j\}\$ of the operator $A = -\Delta$ subject to Dirichlet boundary conditions.

b)(5pts) Is it possible that the first eigenvalue λ_1 of the operators A is equal to zero? Justify your answer.

2.)(10pts) Complete the dots in the definitions of the domain of the operator A and $A^{\frac{3}{2}}$

$$D(A) = \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } \dots \}$$
$$D(A^{\frac{3}{2}}) = \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } \dots \}$$

Solution:

1.) a.) Consider the operator

$$A = -\Delta : H^2(\Omega) \cap H^1_0(\Omega) \to L^2(\Omega)$$

The operator A is self-adjoint, strictly positive with compact inverse A^{-1} . A theory spectral theorem shows that there exist a complete orthonormal basis $\{e_j\}_j$ of $L^2(\Omega)$ made of eigenfunctions of A and corresponding eigenvalues $\{\lambda_j\}, j = 1, 2, ...,$ such that

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_k < \dots < \dots + \infty.$$

b.) The first eigenvalue λ_1 is strictly positive. Otherwise, if $\lambda_1 = 0$, it means that $Ae_1 = \lambda_1 e_1 = 0$, that is, $Ae_1 = 0$, or $e_1 = A^{-1}0 = 0$. But, we know that $e_1 = 0$ cannot be an eigenvector.

2.) We have $||A\varphi|| = (A\varphi, A\varphi)$. Then

$$D(A) = \{\varphi \in L^2, \ A\varphi \in L^2(\Omega)\} = \{\varphi \in L^2, \ \|A\varphi\| < \infty\}$$
$$= \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } (\sum_{j=1}^{\infty} \alpha_j A e_j(x), \sum_{j=1}^{\infty} \alpha_j A e_j(x)) < \infty\}$$
$$= \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } \sum_{j=1}^{\infty} \alpha_j^2 \lambda_j^2 < \infty\}$$

We also have $||A^{\frac{3}{2}}\varphi|| = (A^{\frac{3}{2}}\varphi, A^{\frac{3}{2}}\varphi)$. Then

$$D(A^{\frac{3}{2}}) = \{\varphi \in L^2, \ A^{\frac{3}{2}}\varphi \in L^2(\Omega)\} = \{\varphi \in L^2, \ \|A^{\frac{3}{2}}\varphi\| < \infty\}$$
$$= \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } (\sum_{j=1}^{\infty} \alpha_j A^{\frac{3}{2}} e_j(x), \sum_{j=1}^{\infty} \alpha_j A^{\frac{3}{2}} e_j(x)) < \infty\}$$
$$= \{\varphi(x) = \sum_{j=1}^{\infty} \alpha_j e_j(x) \text{ such that } \sum_{j=1}^{\infty} \alpha_j^2 \lambda_j^3 < \infty\}$$

Problem 2: Let Ω be an open bounded domain of \mathbb{R}^3 of class \mathcal{C}^2 . Consider the spaces

$$V = \{\varphi \in H^2(\Omega), \ \frac{\partial \varphi}{\partial n}|_{\partial\Omega} = 0\}$$
$$W = \{\varphi \in H^2(\Omega), \ \frac{\partial \varphi}{\partial n}|_{\partial\Omega} = 0, \ \int_{\Omega} \varphi(x) dx = 0\}$$
$$H == \{\varphi \in L^2(\Omega), \ \int_{\Omega} \varphi(x) dx = 0\}$$

1.) a.)(10pts) Explain how to obtain a basis of $L^2(\Omega)$ by considering the eigenvalue problem for the Laplace operator $N = -\Delta$ subject to Neuman boundary conditions. b.)(5pts) Consider the operator

$$T = 2I + N^{\frac{1}{2}} + N : V \to L^2(\Omega).$$

Find the expression of ζ_j such that $Tw_j = \zeta_j w_j$, where $\{w_j\}$ are the eigenfunctions of the operator N.

2.)(5pts) Consider the linear operators

$$B = -\Delta : V \to H,$$

$$C = (-\Delta)^{\frac{1}{2}} : H^{1}(\Omega) \to H,$$

$$D = I - \Delta : V \to L^{2},$$

$$E : (I - \Delta)^{-\frac{1}{2}} : (H^{1}(\Omega))' \to H^{1}(\Omega).$$

Which ones of the above operators are isomorphism?

Solution:

Consider the operator

$$N = -\Delta : W \to H$$

The operator A is self-adjoint, strictly positive with compact inverse N^{-1} . A theory spectral theorem shows that there exist a complete orthonormal basis $\{w_j\}_j$ of H made of eigenfunctions of N and corresponding eigenvalues $\{\mu_j\}, j = 1, 2, ...,$ such that

$$0 < \mu_1 < \mu_2 < \dots < \mu_k < \dots < \dots + \infty.$$

Now, we notice that if $w_0(x) = \frac{1}{\sqrt{|\Omega|}}$ then $w_j \in V$ and we have $Nw_0(x) = 0w_0(x)$, that is w_0 is an eigenvalue of N corresponding to the eigenvalue $\mu_0 = 0$. Thus the family $\{w_j\}$, j = 0, 1, 2, ..., i a complet basis we orthonormal basis of $L^2(\Omega)$. 2.) We have $N^{\frac{1}{2}}w_j = \sqrt{\lambda_j}w_j$ and $Nw_j = \lambda_j w_j$, hence

$$Tw_{j} = (2I + N^{\frac{1}{2}} + N)w_{j} = 2w_{j} + N^{\frac{1}{2}}w_{j} + Nw_{j}$$
$$= (2 + \sqrt{\lambda_{j}} + \lambda_{j})w_{j}$$

therefore

$$\zeta_j = 2 + \sqrt{\lambda_j} + \lambda_j, \quad j = 0, 1, 2, ...$$

2.)Only the operator D is an isomorphism.

Problem 3: Let Ω be an open **unit disk** of \mathbb{R}^2 and let $f \in L^2(\Omega)$. Let consider the function $b: \Omega \to \mathbb{R}$ defined by

$$b(x,y) = \frac{1}{1+x^2+y^2}.$$

We now consider the BV problem

$$\begin{cases} 2\phi - \Delta\phi - b(x, y)\phi = f, & x \in \Omega, \\ \frac{\partial\phi}{\partial n}(x) = 0, & x \in \partial\Omega. \end{cases}$$

Use Lax-Milgram theorem to show that this BVP has a unique **weak solution**. Solution:

$$\begin{aligned} a(\phi,q) &= 2\int_{\Omega} \phi q dx + \int_{\Omega} \nabla \phi \cdot \nabla q dx - \int_{\Omega} b(x,y) \phi q dx = \int_{\Omega} f q dx, \quad \forall q \in H^{1}(\Omega). \\ \text{have } 0 &\leq x^{2} + y^{2} \leq 1 \Longrightarrow 1 \leq 1 + x^{2} + y^{2} \leq 2 \Longrightarrow \frac{1}{2} \leq \frac{1}{1 + x^{2} + y^{2}} \leq 1 \\ &\implies -1 \leq -b(x,y) \leq -\frac{1}{2}. \end{aligned}$$

The bilinear form $a: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ is continuous and coercive. Indeed, we have $H^1(\Omega) \subset L^2(\Omega)$, that is, $\|\varphi\| \leq c \|\varphi\|_{H^1}$ and then

$$\begin{aligned} |a(\varphi,q)| &\leq 2 \int_{\Omega} |\varphi| |q| dx + \int_{\Omega} |\nabla \varphi| |\nabla q| dx + \int_{\Omega} b(x,y) |\varphi| |q| dx \\ &\leq 2 \|\varphi\| \|q\| + \|\nabla \varphi\| \|\nabla q\| + \|\varphi\| \|q\| \\ &\leq c_0 \|\varphi\|_{H^1} \|q\|_{H^1}, \quad \forall \varphi, q \in H^1. \end{aligned}$$

We also have

We

$$\begin{split} a(u,u) &= \int_{\Omega} u^2 dx + \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} b(x,y) u^2 dx \\ &\geq 2 \int_{\Omega} u^2 dx + \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} u^2 dx \\ &\geq \int_{\Omega} u^2 dx + \int_{\Omega} |\nabla u|^2 dx. \end{split}$$

We finally get that

$$a(u, u) \ge ||u||_{H^1}^2$$

As $f \in L^2(\Omega)$, it implies that $f \in (H^1(\Omega))'$, we apply the Lax Milgram theorem to prove that there exists a unique function $u \in H^1(\Omega)$ that is the weak solution of the BVP. **Problem 4:**Let Ω be an open bounded domain of \mathbb{R}^3 of class \mathcal{C}^2 . Given $f \in L^2(\Omega)$ and a value $\varepsilon \in [1, 5]$, we consider the BV problem

$$\begin{cases} -\Delta \phi + \phi^{2\varepsilon - 1} = f, & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega, \end{cases}$$

1.)(3pts)Write a weak formulation for the problem.

2.)(7pts)Consider an approximate problem and show the existence of an approximate solution $\phi_m(x)$ of the BVP. Be brief and concise, no need to give too much details.

3.)(10pts) Obtain all useful estimates that are bounded by a constant independent of m and that are needed for the passage to the limit in approximate problem.

(Do not prove the passage to the limit).

Solution:

1.)
$$\int_{\Omega} \nabla \phi \cdot \nabla q dx + \int_{\Omega} \phi^{2\varepsilon - 1} q dx = \int_{\Omega} f q dx, \quad q \in V = H_0^1(\Omega) \cap L^{2\varepsilon}(\Omega), \tag{1}$$

In space dimension one and two, we can take $V = H_0^1$. In space dimension three, we can take $V = H_0^1$, if $1 \le 2\varepsilon \le 6$.

2.) We know that there exist a complete orthonormal family of eigenfunctions $\{e_j\}$ in $H^2(\Omega) \cap H^1_0$, and even in H^s such that $H^s \subset L^{2\varepsilon}$ if $\Omega \in \mathcal{C}^s$, and corresponding eigenvalues $\{\lambda_j\}$ such that $-\Delta e_j(x) = \lambda_j e_j(x)$, where

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_k < \dots + \infty.$$

Let $m \in \mathbb{N}^*$ and $E_m = \operatorname{span}\{e_1, \dots, e_m\}$. We now look for $\phi_m(x) = \sum_{j=1}^m c_j e_j(x)$ that is solution of the following approximate problem

$$\int_{\Omega} \nabla \phi_m \cdot \nabla q dx + \int_{\Omega} \phi_m^{2\varepsilon - 1} q dx = \int_{\Omega} f q dx, \quad q \in E_m.$$
⁽²⁾

Taking $q = e_j$, for j = 1, 2, ..., m, we find that is equivalent to the vector equation

MY + F(Y) = 0,

where $Y = (c_1, c_2, ..., c_m)$ and F(Y) a nonlinear function. This system has a unique solution Y by the Brauer fixed point theorem. Hence, the existence of the approximate solution $\phi_m \in E_m$.

3.) We take $q = \phi_m$ in (1) and we find

$$\|\phi_m\|_{H_0^1}^2 + \int_{\Omega} \phi_m^{2\varepsilon} dx = \int_{\Omega} f \phi_m dx \le \|\int_{\Omega} f \phi_m dx\| \le \|f\|_{-1} \|\phi_m\|_{H_0^1} \le \frac{1}{2} \|\phi_m\|_{H_0^1}^2 + \frac{1}{2} \|f\|_{-1}^2,$$

hence

$$\|\phi_m\|_{H^1_0}^2 + 2\int_{\Omega} |\phi_m|^{2\varepsilon} dx \le c_0^2 \|f\|^2 = C \implies .\|\phi_m\|_{H^1_0} \le C, \ \|\phi_m\|_{L^{2\varepsilon}}^2 \le \frac{1}{2}C.$$

where the constant C does is independent of m and where we used $||f||_{-1} \leq c_0 ||f||$. We also have

$$\|\phi_m^{2\varepsilon-1}\|_{L^{\frac{2\varepsilon}{2\varepsilon-1}}(\Omega)}^{\frac{2\varepsilon}{2\varepsilon-1}} = \int_{\Omega} |\phi_m^{2\varepsilon-1}|^{\frac{2\varepsilon}{2\varepsilon-1}} dx = \int_{\Omega} |\phi_m|^{2\varepsilon} dx = \|\phi_m\|_{L^{2\varepsilon}}^{2\varepsilon} \le \frac{1}{2}C.$$

Problem 5: Let Ω be an open bounded domain of \mathbb{R}^3 of class \mathcal{C}^2 . Given $f \in L^2(\Omega)$, we consider the BV problem

$$\begin{cases} -\Delta \phi + \phi^5 = f, \quad x \in \Omega, \\ u(x) = 0, \quad x \in \partial \Omega, \end{cases}$$

1.)(3pts) Write the weak variational formulation of the approximate problem.

2.)(12pts) Assume the approximate solutions $\phi_m(x)$ of the approximate BVP do exist, and satisfy the estimates

$$\|\nabla \phi_m\|^2 \le C$$
 and $\int_{\Omega} |\phi_m(x)|^6 dx < C$,

where C is independent of m.

Explain how we can deduce a solution of the problem by passing to the limit $m \to \infty$ in the approximate problem. Be brief, clear and precise.

3.)(5pts) Prove that the solution of the BVP is unique.

Solution:

1.)
$$\int_{\Omega} \nabla \phi_m \cdot \nabla q dx + \int_{\Omega} \phi_m^5 q dx = \int_{\Omega} f q dx, \quad q \in E_m = \operatorname{span}\{e_1, \dots, e_m\}.$$
 (3)

2.) • If $\|\phi_m\|_{H_0^1} \leq C$, then there exists a subsequence $\{\phi_m\}_m$ such that $\phi_m \rightharpoonup \phi$ in H_0^1 , that is,

$$\int_{\Omega} \nabla \phi_m \cdot \nabla q \, dx \to \int_{\Omega} \nabla \phi \cdot \nabla q \, dx \quad \text{as } m \to \infty$$

• If $\|\phi_m\|_{L^6(\Omega)} \leq C$, then $\|\phi_m^5\|_{L^{\frac{6}{5}}}^{\frac{6}{5}} = \int_{\Omega} |\phi_m^5|^{\frac{6}{5}} dx = \int_{\Omega} \phi_m^6 dx \leq C$ and there exists a subsequence $\{\phi_m\}_m$ such that $\phi_m^5 \to \chi$ in $L^{\frac{6}{5}}$. Now, as the function $g(x) = x^5$ is continuous and $\phi_m \to \phi$ in L^2 and a.e. in Ω , it follows that $\phi_m^5 \to \phi^5$ a.e. in Ω . We apply a Lemma form the lecture notes that shows that $\phi_m^5 \to \phi^5$. that is, $chi = \phi^5$ and

$$\int_{\Omega} \phi_m^5 q dx \to \int_{\Omega} \phi^5 q dx \quad \text{as } m \to \infty.$$

With this, we can pass to the limit $m \to \infty$ in the approximate problem (3) to find

$$\int_{\Omega} \nabla \phi \cdot \nabla q dx + \int_{\Omega} \phi^5 q dx = \int_{\Omega} f q dx, \quad q \in H^1_0(\Omega).$$

3.) Setting $\phi = \phi_1 - \phi_2$, where ϕ_1 and ϕ_2 are two solutions of the BV problem, we have

$$\int_{\Omega} \nabla \phi \cdot \nabla q dx + \int_{\Omega} (\phi_1^5 - \phi_2^5) q dx = 0, \quad q \in H_0^1(\Omega).$$
(4)

in particular, for $q = \phi$, we have

$$\|\phi\|_{H^1_0} + \int_{\Omega} (\phi_1^5 - \phi_2^5)\phi dx = 0.$$
(5)

But, the mean value theorem says $\phi_1^5 - \phi_2^5 = (\phi_1 - \phi_2) \int_0^1 (4(s\phi_1 + (1-s)\phi_2)^4 ds)$. Thus, $\int_{\Omega} (\phi_1^5 - \phi_2^5) \phi dx = 4 \int_{\Omega} \int_0^1 (s\phi_1 + (1-s)\phi_2)^4 \phi^4 ds dx \ge 0$, and we deduce that $\|\phi\|_{H_0^1} = 0$ and $\phi = 0$, hence $\phi_1 = \phi_2$ and the solution of the BVP is unique.