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Problem 1: Let Ω be an open bounded domain of R3 of class C3.
1.)a.)(5pts) Explain how to obtain eigenfunctions {ej(x)} and corresponding eigenvalues
{λj} of the operator A = −∆ subject to Dirichlet boundary conditions.
b)(5pts) Is it possible that the first eigenvalue λ1 of the operators A is equal to zero? Justify
your answer.
2.)(10pts) Complete the dots in the definitions of the domain of the operator A and A

3

2

D(A) = {ϕ(x) =
∞
∑

j=1

αjej(x) such that ...............}

D(A
3

2 ) = {ϕ(x) =
∞
∑

j=1

αjej(x) such that ................}

Solution:
1.) a.) Consider the operator

A = −∆ : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

The operator A is self-adjoint, strictly positive with compact inverse A−1. A theory spec-
tral theorem shows that there exist a complete orthonormal basis {ej}j of L2(Ω) made of
eigenfunctions of A and corresponding eigenvalues {λj}, j = 1, 2, ...,, such that

0 < λ1 < λ2 < .... < λk < ..... < ..... +∞.

b.) The first eigenvalue λ1 is strictly positive. Otherwise, if λ1 = 0, it means that
Ae1 = λ1e1 = 0, that is, Ae1 = 0, or e1 = A−10 = 0. But, we know that e1 = 0 can-
not be an eigenvector.

2.) We have ‖Aϕ‖ = (Aϕ,Aϕ). Then

D(A) = {ϕ ∈ L2, Aϕ ∈ L2(Ω)} = {ϕ ∈ L2, ‖Aϕ‖ < ∞}

= {ϕ(x) =
∞
∑

j=1

αjej(x) such that (

∞
∑

j=1

αjAej(x),

∞
∑

j=1

αjAej(x)) < ∞}

= {ϕ(x) =
∞
∑

j=1

αjej(x) such that
∞
∑

j=1

α2
jλ

2
j < ∞}

We also have ‖A 3

2ϕ‖ = (A
3

2ϕ,A
3

2ϕ). Then

D(A
3

2 ) = {ϕ ∈ L2, A
3

2ϕ ∈ L2(Ω)} = {ϕ ∈ L2, ‖A 3

2ϕ‖ < ∞}

= {ϕ(x) =
∞
∑

j=1

αjej(x) such that (
∞
∑

j=1

αjA
3

2 ej(x),
∞
∑

j=1

αjA
3

2 ej(x)) < ∞}

= {ϕ(x) =
∞
∑

j=1

αjej(x) such that

∞
∑

j=1

α2
jλ

3
j < ∞}
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Problem 2: Let Ω be an open bounded domain of R3 of class C2. Consider the spaces

V = {ϕ ∈ H2(Ω),
∂ϕ

∂n
|∂Ω = 0}

W = {ϕ ∈ H2(Ω),
∂ϕ

∂n
|∂Ω = 0,

∫

Ω

ϕ(x)dx = 0}

H == {ϕ ∈ L2(Ω),

∫

Ω

ϕ(x)dx = 0}

1.) a.)(10pts) Explain how to obtain a basis of L2(Ω) by considering the eigenvalue problem
for the Laplace operator N = −∆ subject to Neumman boundary conditions.
b.)(5pts) Consider the operator

T = 2I +N
1

2 +N : V → L2(Ω).

Find the expression of ζj such that Twj = ζjwj, where {wj} are the eigenfunctions of the
operator N .
2.)(5pts) Consider the linear operators

B = −∆ : V → H,

C = (−∆)
1

2 : H1(Ω) → H,

D = I −∆ : V → L2,

E : (I −∆)−
1

2 : (H1(Ω))′ → H1(Ω).

Which ones of the above operators are isomorphism?

Solution:
Consider the operator

N = −∆ : W → H

The operator A is self-adjoint, strictly positive with compact inverse N−1. A theory spectral
theorem shows that there exist a complete orthonormal basis {wj}j of H made of eigenfunc-
tions of N and corresponding eigenvalues {µj}, j = 1, 2, ...,, such that

0 < µ1 < µ2 < .... < µk < ..... < .....+∞.

Now, we notice that if w0(x) =
1√
|Ω|

then w) ∈ V and we have Nw0(x) = 0w0(x), that is

w0 is an eigenvalue of N corresponding to the eigenvalue µ0 = 0. Thus the family {wj},
j = 0, 1, 2, , , is a complet basis we orhtonormal basis of L2(Ω).

2.) We have N
1

2wj =
√

λjwj and Nwj = λjwj, hence

Twj = (2I +N
1

2 +N)wj = 2wj +N
1

2wj +Nwj

= (2 +
√

λj + λj)wj

therefore
ζj = 2 +

√

λj + λj, j = 0, 1, 2, ...

2.)Only the operator D is an isomorphism.
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Problem 3: Let Ω be an open unit disk of R2 and let f ∈ L2(Ω).
Let consider the function b : Ω → R defined by

b(x, y) =
1

1 + x2 + y2
.

We now consider the BV problem







2φ−∆φ− b(x, y)φ = f, x ∈ Ω,

∂φ

∂n
(x) = 0, x ∈ ∂Ω.

Use Lax-Milgram theorem to show that this BVP has a unique weak solution.

Solution:

a(φ, q) = 2

∫

Ω

φqdx+

∫

Ω

∇φ.∇qdx−
∫

Ω

b(x, y)φqdx =

∫

Ω

fqdx, ∀q ∈ H1(Ω).

We have 0 ≤ x2 + y2 ≤ 1 =⇒ 1 ≤ 1 + x2 + y2 ≤ 2 =⇒ 1
2
≤ 1

1+x2+y2
≤ 1

=⇒ −1 ≤ −b(x, y) ≤ −1

2
.

The bilinear form a : H1(Ω)×H1(Ω) → R is continuous and coercive.
Indeed, we have H1(Ω) ⊂ L2(Ω), that is, ‖ϕ‖ ≤ c‖ϕ‖H1 and then

|a(ϕ, q)| ≤ 2

∫

Ω

|ϕ||q|dx+

∫

Ω

|∇ϕ||∇q|dx+

∫

Ω

b(x, y)|ϕ||q|dx

≤ 2‖ϕ‖‖q‖+ ‖∇ϕ‖‖∇q‖++‖ϕ‖‖q‖
≤ c0‖ϕ‖H1‖q‖H1 , ∀ϕ, q ∈ H1.

We also have

a(u, u) =

∫

Ω

u2dx+

∫

Ω

|∇u|2dx−
∫

Ω

b(x, y)u2dx

≥ 2

∫

Ω

u2dx+

∫

Ω

|∇u|2dx−
∫

Ω

u2dx

≥
∫

Ω

u2dx +

∫

Ω

|∇u|2dx.

We finally get that

a(u, u) ≥ ‖u‖2H1.

As f ∈ L2(Ω), it implies that f ∈ (H1(Ω))′, we apply the Lax Milgram theorem to prove
that there exists a unique function u ∈ H1(Ω) that is the weak solution of the BVP.
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Problem 4:Let Ω be an open bounded domain of R3 of class C2.
Given f ∈ L2(Ω) and a value ε ∈ [1, 5], we consider the BV problem

{

−∆φ + φ2ε−1 = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

1.)(3pts)Write a weak formulation for the problem.
2.)(7pts)Consider an approximate problem and show the existence of an approximate solution
φm(x) of the BVP. Be brief and concise, no need to give too much details.
3.)(10pts) Obtain all useful estimates that are bounded by a constant independent of m and
that are needed for the passage to the limit in approximate problem.
(Do not prove the passage to the limit).

Solution:

1.)

∫

Ω

∇φ.∇qdx+

∫

Ω

φ2ε−1qdx =

∫

Ω

fqdx, q ∈ V = H1
0 (Ω) ∩ L2ε(Ω), (1)

In space dimension one and two, we can take V = H1
0 . In space dimension three, we can

take V = H1
0 , if 1 ≤ 2ε ≤ 6.

2.) We know that there exist a complete orthonormal family of eigenfunctions {ej} in
H2(Ω) ∩H1

0 , and even in Hs such that Hs ⊂ L2ε if Ω ∈ Cs, and corresponding eigenvalues
{λj} such that −∆ej(x) = λjej(x), where

0 < λ1 < λ2 < .... < λk < .... +∞.

Let m ∈ N
∗ and Em = span{e1, ..., em}. We now look for φm(x) =

∑m

j=1 cjej(x) that is
solution of the following approximate problem

∫

Ω

∇φm.∇qdx+

∫

Ω

φ2ε−1
m qdx =

∫

Ω

fqdx, q ∈ Em. (2)

Taking q = ej, for j = 1, 2, ..., m, we find that is equivalent to the vector equation

MY + F (Y ) = 0,

where Y = (c1, c2, ..., cm) and F (Y ) a nonlinear function. This system has a unique solution
Y by the Brauer fixed point theorem. Hence, the existence of the approximate solution
φm ∈ Em.
3.) We take q = φm in (1) and we find

‖φm‖2H1

0

+

∫

Ω

φ2ε
mdx =

∫

Ω

fφmdx ≤ |
∫

Ω

fφmdx| ≤ ‖f‖−1‖φm‖H1

0
≤ 1

2
‖φm‖2H1

0

+
1

2
‖f‖2−1,

hence

‖φm‖2H1

0

+ 2

∫

Ω

|φm|2εdx ≤ c20‖f‖2 = C =⇒ .‖φm‖H1

0
≤ C, ‖φm‖2εL2ε ≤ 1

2
C.

where the constant C does is independent of m and where we used ‖f‖−1 ≤ c0‖f‖.
We also have

‖φ2ε−1
m ‖

2ε

2ε−1

L
2ε

2ε−1 (Ω)
=

∫

Ω

|φ2ε−1
m | 2ε

2ε−1dx =

∫

Ω

|φm|2εdx = ‖φm‖2εL2ε ≤ 1

2
C.
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Problem 5: Let Ω be an open bounded domain of R3 of class C2. Given f ∈ L2(Ω), we
consider the BV problem

{

−∆φ+ φ5 = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

1.)(3pts) Write the weak variational formulation of the approximate problem.
2.)(12pts) Assume the approximate solutions φm(x) of the approximate BVP do exist, and
satisfy the estimates

‖∇φm‖2 ≤ C and

∫

Ω

|φm(x)|6dx < C,

where C is independent of m.
Explain how we can deduce a solution of the problem by passing to the limit m → ∞ in the
approximate problem. Be brief, clear and precise.
3.)(5pts) Prove that the solution of the BVP is unique.

Solution:

1.)

∫

Ω

∇φm.∇qdx+

∫

Ω

φ5
mqdx =

∫

Ω

fqdx, q ∈ Em = span{e1, ..., em}. (3)

2.) • If ‖φm‖H1

0
≤ C, then there exists a subsequence {φm}m such that φm ⇀ φ in H1

0 , that
is,

∫

Ω

∇φm.∇qdx →
∫

Ω

∇φ.∇qdx as m → ∞

• If ‖φm‖L6(Ω) ≤ C, then ‖φ5
m‖

6

5

L
6

5

=
∫

Ω
|φ5

m|
6

5dx =
∫

Ω
φ6
mdx ≤ C and there exists a subse-

quence {φm}m such that φ5
m ⇀ χ in L

6

5 . Now, as the function g(x) = x5 is continuous and
φm → φ in L2 and a.e. in Ω, it follows that φ5

m → φ5 a.e. in Ω. We apply a Lemma form
the lecture notes that shows that φ5

m ⇀ φ5. that is, chi = φ5 and

∫

Ω

φ5
mqdx →

∫

Ω

φ5qdx as m → ∞.

With this, we can pass to the limit m → ∞ in the approximate problem (3) to find

∫

Ω

∇φ.∇qdx+

∫

Ω

φ5qdx =

∫

Ω

fqdx, q ∈ H1
0 (Ω),

3.) Setting φ = φ1 − φ2, where φ1 and φ2 are two solutions of the BV problem, we have

∫

Ω

∇φ.∇qdx+

∫

Ω

(φ5
1 − φ5

2)qdx = 0, q ∈ H1
0 (Ω). (4)

in particular, for q = φ, we have

‖φ‖H1

0
+

∫

Ω

(φ5
1 − φ5

2)φdx = 0. (5)

But, the mean value theorem says φ5
1 − φ5

2 = (φ1 − φ2)
∫ 1

0
(4(sφ1 + (1 − s)φ2)

4ds. Thus,
∫

Ω
(φ5

1 − φ5
2)φdx = 4

∫

Ω

∫ 1

0
(sφ1 + (1− s)φ2)

4φ4dsdx ≥ 0, and we deduce that ‖φ‖H1

0
= 0 and

φ = 0, hence φ1 = φ2 and the solution of the BVP is unique.
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