King Fahd University of Petroleum and Minerals

Department of Mathematics
Math 569 Midterm Exam
The First Semester of 2023-2024 (231)
Time Allowed: 130mn
Name:
ID number:

Textbooks are not authorized in this exam

Problem \#	Marks	Maximum Marks
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1: Let Ω be an open bounded domain of \mathbb{R}^{3} of class \mathcal{C}^{3}.
1.)a.)(5pts) Explain how to obtain eigenfunctions $\left\{e_{j}(x)\right\}$ and corresponding eigenvalues $\left\{\lambda_{j}\right\}$ of the operator $A=-\Delta$ subject to Dirichlet boundary conditions.
b)(5pts) Is it possible that the first eigenvalue λ_{1} of the operators A is equal to zero? Justify your answer.
2.)(10pts) Complete the dots in the definitions of the domain of the operator A and $A^{\frac{3}{2}}$

$$
\left.\begin{array}{rl}
D(A) & =\left\{\varphi(x)=\sum_{j=1}^{\infty} \alpha_{j} e_{j}(x) \quad \text { such that } \ldots \ldots \ldots \ldots\right.
\end{array}\right\}
$$

Solution:

1.) a.) Consider the operator

$$
A=-\Delta: H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)
$$

The operator A is self-adjoint, strictly positive with compact inverse A^{-1}. A theory spectral theorem shows that there exist a complete orthonormal basis $\left\{e_{j}\right\}_{j}$ of $L^{2}(\Omega)$ made of eigenfunctions of A and corresponding eigenvalues $\left\{\lambda_{j}\right\}, j=1,2, \ldots$, , such that

$$
0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{k}<\ldots .<\ldots . .+\infty .
$$

b.) The first eigenvalue λ_{1} is strictly positive. Otherwise, if $\lambda_{1}=0$, it means that $A e_{1}=\lambda_{1} e_{1}=0$, that is, $A e_{1}=0$, or $e_{1}=A^{-1} 0=0$. But, we know that $e_{1}=0$ cannot be an eigenvector.
2.) We have $\|A \varphi\|=(A \varphi, A \varphi)$. Then

$$
\begin{aligned}
D(A) & =\left\{\varphi \in L^{2}, \quad A \varphi \in L^{2}(\Omega)\right\}=\left\{\varphi \in L^{2},\|A \varphi\|<\infty\right\} \\
& =\left\{\varphi(x)=\sum_{j=1}^{\infty} \alpha_{j} e_{j}(x) \quad \text { such that } \quad\left(\sum_{j=1}^{\infty} \alpha_{j} A e_{j}(x), \sum_{j=1}^{\infty} \alpha_{j} A e_{j}(x)\right)<\infty\right\} \\
& =\left\{\varphi(x)=\sum_{j=1}^{\infty} \alpha_{j} e_{j}(x) \quad \text { such that } \quad \sum_{j=1}^{\infty} \alpha_{j}^{2} \lambda_{j}^{2}<\infty\right\}
\end{aligned}
$$

We also have $\left\|A^{\frac{3}{2}} \varphi\right\|=\left(A^{\frac{3}{2}} \varphi, A^{\frac{3}{2}} \varphi\right)$. Then

$$
\begin{aligned}
D\left(A^{\frac{3}{2}}\right) & =\left\{\varphi \in L^{2}, \quad A^{\frac{3}{2}} \varphi \in L^{2}(\Omega)\right\}=\left\{\varphi \in L^{2},\left\|A^{\frac{3}{2}} \varphi\right\|<\infty\right\} \\
& =\left\{\varphi(x)=\sum_{j=1}^{\infty} \alpha_{j} e_{j}(x) \quad \text { such that } \quad\left(\sum_{j=1}^{\infty} \alpha_{j} A^{\frac{3}{2}} e_{j}(x), \sum_{j=1}^{\infty} \alpha_{j} A^{\frac{3}{2}} e_{j}(x)\right)<\infty\right\} \\
& =\left\{\varphi(x)=\sum_{j=1}^{\infty} \alpha_{j} e_{j}(x) \quad \text { such that } \quad \sum_{j=1}^{\infty} \alpha_{j}^{2} \lambda_{j}^{3}<\infty\right\}
\end{aligned}
$$

Problem 2: Let Ω be an open bounded domain of \mathbb{R}^{3} of class \mathcal{C}^{2}. Consider the spaces

$$
\begin{aligned}
V & =\left\{\varphi \in H^{2}(\Omega),\left.\frac{\partial \varphi}{\partial n}\right|_{\partial \Omega}=0\right\} \\
W & =\left\{\varphi \in H^{2}(\Omega),\left.\frac{\partial \varphi}{\partial n}\right|_{\partial \Omega}=0, \int_{\Omega} \varphi(x) d x=0\right\} \\
H & =\left\{\varphi \in L^{2}(\Omega), \quad \int_{\Omega} \varphi(x) d x=0\right\}
\end{aligned}
$$

1.) a.) (10pts) Explain how to obtain a basis of $L^{2}(\Omega)$ by considering the eigenvalue problem for the Laplace operator $N=-\Delta$ subject to Neumman boundary conditions.
b.)(5pts) Consider the operator

$$
T=2 I+N^{\frac{1}{2}}+N: V \rightarrow L^{2}(\Omega) .
$$

Find the expression of ζ_{j} such that $T w_{j}=\zeta_{j} w_{j}$, where $\left\{w_{j}\right\}$ are the eigenfunctions of the operator N.
2.)(5pts) Consider the linear operators

$$
\begin{aligned}
& B=-\Delta: V \rightarrow H, \\
& C=(-\Delta)^{\frac{1}{2}}: H^{1}(\Omega) \rightarrow H, \\
& D=I-\Delta: V \rightarrow L^{2}, \\
& E:(I-\Delta)^{-\frac{1}{2}}:\left(H^{1}(\Omega)\right)^{\prime} \rightarrow H^{1}(\Omega) .
\end{aligned}
$$

Which ones of the above operators are isomorphism?

Solution:

Consider the operator

$$
N=-\Delta: W \rightarrow H
$$

The operator A is self-adjoint, strictly positive with compact inverse N^{-1}. A theory spectral theorem shows that there exist a complete orthonormal basis $\left\{w_{j}\right\}_{j}$ of H made of eigenfunctions of N and corresponding eigenvalues $\left\{\mu_{j}\right\}, j=1,2, \ldots$, , such that

$$
0<\mu_{1}<\mu_{2}<\ldots .<\mu_{k}<\ldots .<\ldots . .+\infty
$$

Now, we notice that if $w_{0}(x)=\frac{1}{\sqrt{|\Omega|}}$ then $w_{)} \in V$ and we have $N w_{0}(x)=0 w_{0}(x)$, that is w_{0} is an eigenvalue of N corresponding to the eigenvalue $\mu_{0}=0$. Thus the family $\left\{w_{j}\right\}$, $j=0,1,2,$, , is a complet basis we orhtonormal basis of $L^{2}(\Omega)$.
2.) We have $N^{\frac{1}{2}} w_{j}=\sqrt{\lambda_{j}} w_{j}$ and $N w_{j}=\lambda_{j} w_{j}$, hence

$$
\begin{aligned}
T w_{j} & =\left(2 I+N^{\frac{1}{2}}+N\right) w_{j}=2 w_{j}+N^{\frac{1}{2}} w_{j}+N w_{j} \\
& =\left(2+\sqrt{\lambda_{j}}+\lambda_{j}\right) w_{j}
\end{aligned}
$$

therefore

$$
\zeta_{j}=2+\sqrt{\lambda_{j}}+\lambda_{j}, \quad j=0,1,2, \ldots
$$

2.) Only the operator D is an isomorphism.

Problem 3: Let Ω be an open unit disk of \mathbb{R}^{2} and let $f \in L^{2}(\Omega)$.
Let consider the function $b: \Omega \rightarrow \mathbb{R}$ defined by

$$
b(x, y)=\frac{1}{1+x^{2}+y^{2}}
$$

We now consider the BV problem

$$
\left\{\begin{array}{l}
2 \phi-\Delta \phi-b(x, y) \phi=f, \quad x \in \Omega \\
\frac{\partial \phi}{\partial n}(x)=0, \quad x \in \partial \Omega
\end{array}\right.
$$

Use Lax-Milgram theorem to show that this BVP has a unique weak solution.

Solution:

$$
a(\phi, q)=2 \int_{\Omega} \phi q d x+\int_{\Omega} \nabla \phi \cdot \nabla q d x-\int_{\Omega} b(x, y) \phi q d x=\int_{\Omega} f q d x, \quad \forall q \in H^{1}(\Omega) .
$$

We have $0 \leq x^{2}+y^{2} \leq 1 \Longrightarrow 1 \leq 1+x^{2}+y^{2} \leq 2 \Longrightarrow \frac{1}{2} \leq \frac{1}{1+x^{2}+y^{2}} \leq 1$

$$
\Longrightarrow \quad-1 \leq-b(x, y) \leq-\frac{1}{2}
$$

The bilinear form $a: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathbb{R}$ is continuous and coercive. Indeed, we have $H^{1}(\Omega) \subset L^{2}(\Omega)$, that is, $\|\varphi\| \leq c\|\varphi\|_{H^{1}}$ and then

$$
\begin{aligned}
|a(\varphi, q)| & \leq 2 \int_{\Omega}|\varphi||q| d x+\int_{\Omega}\left|\nabla \varphi\left\|\nabla q\left|d x+\int_{\Omega} b(x, y)\right| \varphi\right\| q\right| d x \\
& \leq 2\|\varphi\|\|q\|+\|\nabla \varphi\|\|\nabla q\|++\|\varphi\|\|q\| \\
& \leq c_{0}\|\varphi\|_{H^{1}}\|q\|_{H^{1}}, \quad \forall \varphi, q \in H^{1} .
\end{aligned}
$$

We also have

$$
\begin{aligned}
a(u, u) & =\int_{\Omega} u^{2} d x+\int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} b(x, y) u^{2} d x \\
& \geq 2 \int_{\Omega} u^{2} d x+\int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} u^{2} d x \\
& \geq \int_{\Omega} u^{2} d x+\int_{\Omega}|\nabla u|^{2} d x .
\end{aligned}
$$

We finally get that

$$
a(u, u) \geq\|u\|_{H^{1}}^{2}
$$

As $f \in L^{2}(\Omega)$, it implies that $f \in\left(H^{1}(\Omega)\right)^{\prime}$, we apply the Lax Milgram theorem to prove that there exists a unique function $u \in H^{1}(\Omega)$ that is the weak solution of the BVP.

Problem 4:Let Ω be an open bounded domain of \mathbb{R}^{3} of class \mathcal{C}^{2}.
Given $f \in L^{2}(\Omega)$ and a value $\varepsilon \in[1,5]$, we consider the BV problem

$$
\left\{\begin{array}{l}
-\Delta \phi+\phi^{2 \varepsilon-1}=f, \quad x \in \Omega, \\
u(x)=0, \quad x \in \partial \Omega,
\end{array}\right.
$$

1.) (3pts) Write a weak formulation for the problem.
2.) (7 pts) Consider an approximate problem and show the existence of an approximate solution $\phi_{m}(x)$ of the BVP. Be brief and concise, no need to give too much details.
3 .) (10pts) Obtain all useful estimates that are bounded by a constant independent of m and that are needed for the passage to the limit in approximate problem.
(Do not prove the passage to the limit).

Solution:

1.) $\quad \int_{\Omega} \nabla \phi . \nabla q d x+\int_{\Omega} \phi^{2 \varepsilon-1} q d x=\int_{\Omega} f q d x, \quad q \in V=H_{0}^{1}(\Omega) \cap L^{2 \varepsilon}(\Omega)$,

In space dimension one and two, we can take $V=H_{0}^{1}$. In space dimension three, we can take $V=H_{0}^{1}$, if $1 \leq 2 \varepsilon \leq 6$.
2.) We know that there exist a complete orthonormal family of eigenfunctions $\left\{e_{j}\right\}$ in $H^{2}(\Omega) \cap H_{0}^{1}$, and even in H^{s} such that $H^{s} \subset L^{2 \varepsilon}$ if $\Omega \in \mathcal{C}^{s}$, and corresponding eigenvalues $\left\{\lambda_{j}\right\}$ such that $-\Delta e_{j}(x)=\lambda_{j} e_{j}(x)$, where

$$
0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{k}<\ldots+\infty
$$

Let $m \in \mathbb{N}^{*}$ and $E_{m}=\operatorname{span}\left\{e_{1}, \ldots, e_{m}\right\}$. We now look for $\phi_{m}(x)=\sum_{j=1}^{m} c_{j} e_{j}(x)$ that is solution of the following approximate problem

$$
\begin{equation*}
\int_{\Omega} \nabla \phi_{m} \cdot \nabla q d x+\int_{\Omega} \phi_{m}^{2 \varepsilon-1} q d x=\int_{\Omega} f q d x, \quad q \in E_{m} . \tag{2}
\end{equation*}
$$

Taking $q=e_{j}$, for $j=1,2, \ldots, m$, we find that is equivalent to the vector equation

$$
M Y+F(Y)=0
$$

where $Y=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ and $F(Y)$ a nonlinear function. This system has a unique solution Y by the Brauer fixed point theorem. Hence, the existence of the approximate solution $\phi_{m} \in E_{m}$.
3.) We take $q=\phi_{m}$ in (1) and we find

$$
\left\|\phi_{m}\right\|_{H_{0}^{1}}^{2}+\int_{\Omega} \phi_{m}^{2 \varepsilon} d x=\int_{\Omega} f \phi_{m} d x \leq\left|\int_{\Omega} f \phi_{m} d x\right| \leq\|f\|_{-1}\left\|\phi_{m}\right\|_{H_{0}^{1}} \leq \frac{1}{2}\left\|\phi_{m}\right\|_{H_{0}^{1}}^{2}+\frac{1}{2}\|f\|_{-1}^{2},
$$

hence

$$
\left\|\phi_{m}\right\|_{H_{0}^{1}}^{2}+2 \int_{\Omega}\left|\phi_{m}\right|^{2 \varepsilon} d x \leq c_{0}^{2}\|f\|^{2}=C \quad \Longrightarrow \quad .\left\|\phi_{m}\right\|_{H_{0}^{1}} \leq C, \quad\left\|\phi_{m}\right\|_{L^{2 \varepsilon}}^{2 \varepsilon} \leq \frac{1}{2} C .
$$

where the constant C does is independent of m and where we used $\|f\|_{-1} \leq c_{0}\|f\|$. We also have

$$
\left\|\phi_{m}^{2 \varepsilon-1}\right\|_{L^{\frac{2 \varepsilon}{2 \varepsilon-1}}(\Omega)}^{\frac{2 \varepsilon}{2 \varepsilon-1}}=\int_{\Omega}\left|\phi_{m}^{2 \varepsilon-1}\right|^{\frac{2 \varepsilon}{2 \varepsilon-1}} d x=\int_{\Omega}\left|\phi_{m}\right|^{2 \varepsilon} d x=\left\|\phi_{m}\right\|_{L^{2 \varepsilon}}^{2 \varepsilon} \leq \frac{1}{2} C .
$$

Problem 5: Let Ω be an open bounded domain of \mathbb{R}^{3} of class \mathcal{C}^{2}. Given $f \in L^{2}(\Omega)$, we consider the BV problem

$$
\left\{\begin{array}{l}
-\Delta \phi+\phi^{5}=f, \quad x \in \Omega \\
u(x)=0, \quad x \in \partial \Omega
\end{array}\right.
$$

1.)(3pts) Write the weak variational formulation of the approximate problem.
2.)(12pts) Assume the approximate solutions $\phi_{m}(x)$ of the approximate BVP do exist, and satisfy the estimates

$$
\left\|\nabla \phi_{m}\right\|^{2} \leq C \quad \text { and } \quad \int_{\Omega}\left|\phi_{m}(x)\right|^{6} d x<C
$$

where C is independent of m.
Explain how we can deduce a solution of the problem by passing to the limit $m \rightarrow \infty$ in the approximate problem. Be brief, clear and precise.
3.) (5 pts) Prove that the solution of the BVP is unique.

Solution:

1.) $\int_{\Omega} \nabla \phi_{m} . \nabla q d x+\int_{\Omega} \phi_{m}^{5} q d x=\int_{\Omega} f q d x, \quad q \in E_{m}=\operatorname{span}\left\{e_{1}, \ldots, e_{m}\right\}$.
2.) - If $\left\|\phi_{m}\right\|_{H_{0}^{1}} \leq C$, then there exists a subsequence $\left\{\phi_{m}\right\}_{m}$ such that $\phi_{m} \rightharpoonup \phi$ in H_{0}^{1}, that is,

$$
\int_{\Omega} \nabla \phi_{m} \cdot \nabla q d x \rightarrow \int_{\Omega} \nabla \phi \cdot \nabla q d x \quad \text { as } m \rightarrow \infty
$$

- If $\left\|\phi_{m}\right\|_{L^{6}(\Omega)} \leq C$, then $\left\|\phi_{m}^{5}\right\|_{L^{\frac{6}{5}}}^{\frac{6}{5}}=\int_{\Omega}\left|\phi_{m}^{5}\right|^{\frac{6}{5}} d x=\int_{\Omega} \phi_{m}^{6} d x \leq C$ and there exists a subsequence $\left\{\phi_{m}\right\}_{m}$ such that $\phi_{m}^{5} \rightharpoonup \chi$ in $L^{\frac{6}{5}}$. Now, as the function $g(x)=x^{5}$ is continuous and $\phi_{m} \rightarrow \phi$ in L^{2} and a.e. in Ω, it follows that $\phi_{m}^{5} \rightarrow \phi^{5}$ a.e. in Ω. We apply a Lemma form the lecture notes that shows that $\phi_{m}^{5} \rightharpoonup \phi^{5}$. that is, chi $=\phi^{5}$ and

$$
\int_{\Omega} \phi_{m}^{5} q d x \rightarrow \int_{\Omega} \phi^{5} q d x \quad \text { as } m \rightarrow \infty
$$

With this, we can pass to the limit $m \rightarrow \infty$ in the approximate problem (3) to find

$$
\int_{\Omega} \nabla \phi \cdot \nabla q d x+\int_{\Omega} \phi^{5} q d x=\int_{\Omega} f q d x, \quad q \in H_{0}^{1}(\Omega)
$$

3.) Setting $\phi=\phi_{1}-\phi_{2}$, where ϕ_{1} and ϕ_{2} are two solutions of the BV problem, we have

$$
\begin{equation*}
\int_{\Omega} \nabla \phi \cdot \nabla q d x+\int_{\Omega}\left(\phi_{1}^{5}-\phi_{2}^{5}\right) q d x=0, \quad q \in H_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

in particular, for $q=\phi$, we have

$$
\begin{equation*}
\|\phi\|_{H_{0}^{1}}+\int_{\Omega}\left(\phi_{1}^{5}-\phi_{2}^{5}\right) \phi d x=0 \tag{5}
\end{equation*}
$$

But, the mean value theorem says $\phi_{1}^{5}-\phi_{2}^{5}=\left(\phi_{1}-\phi_{2}\right) \int_{0}^{1}\left(4\left(s \phi_{1}+(1-s) \phi_{2}\right)^{4} d s\right.$. Thus, $\int_{\Omega}\left(\phi_{1}^{5}-\phi_{2}^{5}\right) \phi d x=4 \int_{\Omega} \int_{0}^{1}\left(s \phi_{1}+(1-s) \phi_{2}\right)^{4} \phi^{4} d s d x \geq 0$, and we deduce that $\|\phi\|_{H_{0}^{1}}=0$ and $\phi=0$, hence $\phi_{1}=\phi_{2}$ and the solution of the BVP is unique.

