Department of Mathematics, KFUPM

Math 571 Syllabus (Term 222) Instructor: Khaled M. Furati

Course Title: Numerical analysis of Ordinary Differential Equations

Course Description: Theory and implementation of numerical methods for initial and boundary value

problems in ordinary differential equations. One-step, linear multi-step, Runge-Kutta, and extrapolation methods; convergence, stability, error estimates, and practical implementation, Study and analysis of shooting, finite difference and projection methods for boundary value problems for ordinary differential equations.

Prerequisite: Math 471 or consent of the instructor

Textbook: Numerical Methods for Ordinary Differential Equations, Butcher, 3rd ed, 2016

References: Numerical solution of ODEs, Suli, 2022

Numerical methods for ODEs, Griffiths & Higham, 2010

Numerical solution of ODEs, Atkinson, 2009

Learning Outcomes: 1. Define the fundamental concepts of numerical methods for ODEs.

2. Explain the merits and limitations of each numerical method.

3. Use numerical methods for solving ordinary differential equations.

 ${\bf 4.}\ Analyze\ numerical\ methods\ based\ on\ their\ accuracy\ and\ stability.$

5. Develop algorithms that describe the steps of numerical methods.

6. Implement algorithms for solving ODEs using suitable software.

Assignments 30%, Project 10%, Midterm Exam 25%, Final Exam 35%

WK	Date	Topics
1	Jan 15-17	Preliminaries and IVP
2	Jan 22-24	One-step methods
3	Jan 29-31	
4	Feb 05-07	Runge-Kutta methods
5	Feb 12-14	
6	Feb19-21	
7	Feb 26-28	Linear multistep methods
8	Mar 05-07	
9	Mar 12-14	
10	Mar 19-21	Stiff problems
11	Mar 26-28	
12	Apr 02-04	Boundary value problem methods
13	Apr 09-11	
Eid break		
14	Apr 30-May 02	Project preparation
15	May 07-09	Review