King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 572: Numerical Methods for Partial Differential Equations Midterm Exam , Fall Semester 211

Problem 1:

(a) Consider the variational problem: find $u \in V$ such that a(u, v) = L(v) for all $v \in V$, where

$$a(u,v) = \int_0^1 u'v'dx + \int_0^{1/4} uvdx, \quad L(v) = \int_0^1 2x^2v(x)dx,$$

and $V = H^1(0,1)$. Prove the bilinear form is coercive in V equipped with the norm $||u||_V^2 = \int_0^1 (u'^2 + u^2) dx$;

(b) Is the bilinear form $a(u, v) = \int_0^1 (u'v' - 20uv) dx$ coercive in $H_0^1(0, 1)$. Justify your answer.

Problem 2:

(a) Give the variational formulation of the following boundary value problem:

-u'' + 3u = 4, for $x \in (0, 2)$, u'(0) - 2u(0) = 0, u(2) = 0.

(b) Assemble the Ritz-Galerkin system for this problem when using two linear finite elements.

Problem 3:

Let V_h be the finite dimensional space of continuous piecewise **quadratic** functions over the partition of the interval (0,1) into n sub-intervals of size h = 1/n. The functions in V_h over each sub-interval are determined by their value at the end points and at the midpoint. Let u be the solution of the elliptic operator

$$\mathcal{L}u(x) = f(x), \quad x \in (0,1), \ u(0) = u(1) = 0,$$

and u_h be the Galerkin finite element approximation (that is the Galerkin FE solution) and u_I the interpolant of u in V_h .

(a) Show that

 $||u' - u'_I|| \le Ch^2 ||u'''||,$

where h = 1/n and $||v||^2 = \int_0^1 u^2 dx$.

(b) prove the estimate

$$||u - u_h|| \le Ch^3 ||u'''||.$$

Good luck Manal Alotaibi