Department of Mathematics, KFUPM

Math 572 (231): Numerical analysis of PDEs

Instructor: Khaled Furati Final Exam Duration: 180 minutes

Student Name:

Q	1	2	3	4	5	Total	Bonus I	Bonus II
Max	13	13	13	15	16	70	5	5
Points								

Problem 1

Consider the problem

$$-u'' + 2u' + e^x u = x$$
, $0 < x < 1$, $u(0) = 2$, $u(1) = 3$.

Let u_h be the continuous piecewise-linear finite element approximation on a uniform grid.

Define the global basis functions for the solution set S_h and the test space T_h .

Problem 2

In the weak formulation of the wave equation $u_{tt} = u_{xx}$ subject to homogeneous Dirichlet BCs we find $u_h(t) \in S_h$ for each t such that

$$(d_{tt}u_h,\chi)+a(u_h,\chi)=(f,\chi), \quad \forall \chi \in S_h, \qquad t>0,$$

$$u_h(0)=v_h, \quad d_tu_h(0)=w_h,$$
 where $a(v,w)=(v',w').$

Write the fully discrete scheme for $U^n \in S_h$ that approximates $u(t_n)$. Describe U^0 and U^1 .

Problem 3

Consider the following two-point boundary value problem

$$-u'' - 2u' = f(x), 0 < x < 1, u(0) = 0, u'(1) + u(1) = 0,$$

where f is a given smooth function. Let v denote suitable test functions.

Derive the following weak formulation

$$(u' + 2u, v') = u(1)v(1) + (f, v)$$
, provided that $v(0) = 0$.

Problem 4

Consider the following two-point boundary value problem

$$-u'' = 1$$
, $0 < x < 1$, $u'(0) = u(1) = 0$.

Partition the interval [0,1] using the uniform grid $\{x_0, x_1, x_2\} = \{0, 1/2, 1\}$ and let S_h be the space of piecewise-linear continuous functions on this partition vanishing at x = 1.

- a) Determine the analytical expression for the hat basis functions ϕ_0 and ϕ_1 .
- b) Formulate the finite element method using S_h .
- c) Write the numerical scheme in matrix form, then solve the linear system.

Problem 5

Consider the following problem

$$u_t - u_{xx} = f(x),$$
 $0 < x < 1,$ $t > 0,$ $u(t,0) = 0,$ $u(t,1) = 0,$ $u(x,0) = v(x),$ $0 < x < 1.$

The week formulation of this problem is to find $u = u(x, t) \in H_0^1$ such that

$$(u_t, \phi) + a(u, \phi) = (f, \phi), \quad \forall \phi \in H_0^1, \quad t > 0.$$

 $u(x, 0) = v(x), \quad x \in \Omega.$

where $a(u, v) = \int_0^1 v'w'dx$. Consider a uniform mesh with step size h = 1/M and a standard basis $\{\phi_j\}_{j=1}^{M-1}$ of the solution space S_h .

- a) Define the semidiscrete finite element solution $u_h(x,t) = \sum_{j=1}^{M-1} \alpha_j(t) \phi_j(x)$ and write the system of ODEs for $\alpha(t) = (\alpha_1(t), ..., \alpha_M(t))$ in matrix form.
- b) Derive the backward Euler-Galerkin scheme for $\alpha^n = \alpha(t_n)$.

Bonus problem I

Explain what is meant by a priori and posterior error estimates. Which type is desirable for algorithms?

Bonus problem II

In Q5, derive the stability estimate

$$||u_h(t)|| \le ||v_h|| + \int_0^t ||f|| ds.$$

Hint. Start with the weak formulation

$$(d_t u_h, \chi) + a(u_h, \chi) = (f, \chi), \quad \forall \chi \in S_h, \quad u_h(0) = v_h.$$
 Then use $(w^2)' = 2ww'$ and Schwarz inequality $(w, z) \leq \|w\| \|z\|$.
