Student Name:

Q	1	2	3	4	Total
Max	16	9	15	12	52
Points					

1) True or false (Give a very brief justification)
a) When the backward difference method with $h=0.1$ is used to solve $u_{t}+2 u_{x}=0$ then the possible largest time step for which the scheme satisfies the CFL condition is 0.05 .
b) If the approximate numerical solution $U^{n}, n \geq 1$, of the IVP

$$
u_{t}=u_{x x}, \quad u(x, 0)=v(x),
$$

is bounded by $\|v\|_{\infty}$, then the method is stable.
c) For stable implementation of the explicit Euler method for $u_{t}=u_{x x}$ with $h=0.1$, we can use $k=h / 2$.
d) Consider the equation $u^{\prime \prime}-u^{\prime}=0$. Then the scheme

$$
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}-\frac{u_{i+1}-u_{i}}{h}=0
$$

is second order accurate.

2) Consider the problem

$$
\begin{gathered}
u_{t}=2 u_{x}, \quad x \in \mathbb{R}, \quad t>0, \\
u(\cdot, 0)=v, \quad x \in \mathbb{R} .
\end{gathered}
$$

a) Construct the forward differencing (upwind) scheme.
b) Show that if $\lambda \leq 1 / 2, \lambda=k / h$, then

$$
\left\|U^{n}\right\|_{C} \leq\|v\|_{C} .
$$

3) Consider the Dirichlet problem

$$
\begin{aligned}
-\Delta u & =f, & & (x, y) \in \Omega=(0,1) \times(0,1), \\
u & =0, & & \text { on } \Gamma:=\partial \Omega .
\end{aligned}
$$

Introduce the grid points $\left(x_{i}, y_{j}\right)=(i h, j h), 0 \leq i, j \leq M$.
a) Construct the 5-point finite-difference scheme using the centered differencing for the second order derivative. Let $U_{i j}$ denote the approximation of $u\left(x_{i}, y_{j}\right)$.
b) Show that if $f_{i j} \leq 0$ in Ω, then the numerical solution attains its maximum on the boundary.
c) Formulate the matrix form of the scheme for $h=1 / 5$.
d) Show that truncation error is $\tau_{i j}=\frac{h^{2}}{12}\left(\partial_{x}^{4} u\left(\xi_{i}, y_{j}\right)+\partial_{y}^{4} u\left(x_{i}, \eta_{j}\right)\right), \quad\left(\xi_{i}, \eta_{j}\right) \in\left(x_{i-1}, x_{i+1}\right) \times\left(y_{j-1}, y_{j+1}\right)$.
e) Show that

$$
\max _{i j}\left|U_{i j}-u_{i j}\right| \leq C h^{2} \max _{\bar{\Omega}}\left\{\left|\partial_{x}^{4} u\right|,\left|\partial_{y}^{4} u\right|\right\} .
$$

4) Consider the initial-boundary value problem

$$
\begin{aligned}
u_{t} & =u_{x x}-u, \quad 0<x<1, \quad t>0 . \\
u(x, 0) & =x(1-x), \quad 0<x<1, \\
u(0, t) & =u(1, t)=0, \quad t>0 .
\end{aligned}
$$

Introduce the mesh-points $\left(x_{j}, t_{n}\right)=(j h, n k), j=0,1, \ldots M, n=0,1,2, \ldots$.
a) Construct an explicit finite difference scheme.
b) Write down the equations in matrix form.
c) Find the solution at first time step when $h=1 / 4$ and $k=1 / 32$.
d) Perform the von-Neumann stability analysis and show that the scheme is stable for

$$
r<\frac{1}{2}-\frac{k}{4}, \quad \text { where } r=\frac{k}{h^{2}} .
$$

