Department of Mathematics, KFUPM **Math 572 (231): Numerical analysis of PDEs** Instructor: Khaled Furati Midterm Exam Duration: 110 minutes

Student Name:

Q	1	2	3	4	Total
Max	16	9	15	12	52
Points					

1) True or false (Give a very brief justification)

- a) When the backward difference method with h = 0.1 is used to solve $u_t + 2u_x = 0$ then the possible largest time step for which the scheme satisfies the CFL condition is 0.05.
- b) If the approximate numerical solution U^n , $n \ge 1$, of the IVP

$$u_t = u_{xx}, \qquad u(x,0) = v(x),$$

is bounded by $||v||_{\infty}$, then the method is stable.

- c) For stable implementation of the explicit Euler method for $u_t = u_{xx}$ with h = 0.1, we can use k = h/2.
- d) Consider the equation u'' u' = 0. Then the scheme

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} - \frac{u_{i+1} - u_i}{h} = 0$$

is second order accurate.

2) Consider the problem

$$u_t = 2u_x, \quad x \in \mathbb{R}, \quad t > 0,$$
$$u(\cdot, 0) = v, \quad x \in \mathbb{R}.$$

- a) Construct the forward differencing (upwind) scheme.
- b) Show that if $\lambda \leq 1/2$, $\lambda = k/h$, then

$$\|U^n\|_C \le \|v\|_C.$$

3) Consider the Dirichlet problem

$$-\Delta u = f, \qquad (x, y) \in \Omega = (0, 1) \times (0, 1),$$
$$u = 0, \qquad on \ \Gamma \coloneqq \partial \Omega.$$

Introduce the grid points $(x_i, y_j) = (ih, jh), 0 \le i, j \le M$.

- a) Construct the 5-point finite-difference scheme using the centered differencing for the second order derivative. Let U_{ij} denote the approximation of $u(x_i, y_j)$.
- b) Show that if $f_{ij} \leq 0$ in Ω , then the numerical solution attains its maximum on the boundary.
- c) Formulate the matrix form of the scheme for h = 1/5.
- d) Show that truncation error is

$$\tau_{ij} = \frac{h^2}{12} \Big(\partial_x^4 u(\xi_i, y_j) + \partial_y^4 u(x_i, \eta_j) \Big), \qquad (\xi_i, \eta_j) \in (x_{i-1}, x_{i+1}) \times (y_{j-1}, y_{j+1}).$$

e) Show that

$$\max_{ij} |U_{ij} - u_{ij}| \le Ch^2 \max_{\overline{\Omega}} \{ |\partial_x^4 u|, |\partial_y^4 u| \}.$$

4) Consider the initial-boundary value problem

$$u_t = u_{xx} - u, \qquad 0 < x < 1, \qquad t > 0.$$

$$u(x, 0) = x(1 - x), \qquad 0 < x < 1,$$

$$u(0, t) = u(1, t) = 0, \qquad t > 0.$$

Introduce the mesh-points $(x_j, t_n) = (jh, nk), j = 0, 1, ..., M, n = 0, 1, 2,$

- a) Construct an explicit finite difference scheme.
- b) Write down the equations in matrix form.
- c) Find the solution at first time step when h = 1/4 and k = 1/32.
- d) Perform the von-Neumann stability analysis and show that the scheme is stable for

$$r < \frac{1}{2} - \frac{k}{4}$$
, where $r = \frac{k}{h^2}$.