Department of Mathematics, KFUPM

Math 572 Syllabus (Tentative)

2025-2026, first semester (251)

Instructor: Khaled M. Furati

Course Title: Numerical Analysis of Partial Differential Equations

Course Description: Theory and implementation of numerical methods for boundary value

problems in partial differential equations (elliptic, parabolic, and

hyperbolic). Finite difference and finite element methods: convergence, stability, and error estimates. Projection methods and fundamentals of variational methods. Ritz-Galerkin and weighted residual methods.

Prerequisite: Graduate Standing

Textbook: PDEs with numerical methods, Larsson and Thomee, Springer, 2009.

References: 1. Applied numerical methods, lecture notes, McLean and Mustapha, 2023.

2. Numerical solution of PDEs: finite difference methods, Smith, 1985

Learning Outcomes: 1. Use finite difference method for solving PDEs.

2. Apply Galerkin method to solve elliptic PDEs.

3. Evaluate the impact of elements types and number on the approximate solution.

4. Analyze numerical methods based on their accuracy and stability.

5. Estimate the a priori error and stability of the approximate solution.

6. Implement algorithms for solving PDEs using suitable software.

Assessment: Assignments 30%, Project 10%, Midterm Exam 30%, Final Exam 30%

WK	Date	Ch	Topics
1	24-Aug	1	Introdcution
2	31-Aug	2	FDM for two-point BVP
3	07-Sep	4	FDMs for elliptic equations
4	14-Sep		
5	21-Sep	9	FDMs for parabolic equations
6	28-Sep		
7	05-Oct	12	FDMs for hyperbolic equations
8	12-Oct		
9	19-Oct	5	FEMs for elliptic equations
Midterm break			
10	02-Nov	5	FEMs for elliptic equations
11	09-Nov		Project proposals
12	16-Nov	10	FEM for parabolic equations
13	23-Nov	13	FEM for hyperbolic equations
14	30-Nov		Project preparation
15	07-Dec		Review and project presentations