KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics & Statistics

Math575 Course Syllabus

Introduction to Approximation Theory Term - 212

Jaafar Almutawa (jaafarm@kfupm.edu.sa)

Course Title: Math575 (Introduction to Approximation Theory)

Credits: 3-0-3

Textbooks:

- Approximation Theory and Methods, 1st Edition, M. J. D. Powell, Cambridge University Press; 1st edition (March 31, 1981)
- Interpolation and Approximation by Polynomials by George M. Phillips Springer 2003
- <u>Introduction to approximation theory</u> by Elliott Ward Cheney Jr. <u>American</u> <u>Mathematical Society 1966</u>

<u>**Objectives:**</u> Best approximation in normed linear spaces: basic concepts. Lagrange and Hermite interpolation. Approximate solution of over-determined system of linear equations. Linear approximation of continuous functions in Chebyshev and least squares norms. Rational approximation. Piecewise polynomial approximation. Cubic and B-splines.

Learning Outcomes:

Upon successful completion of this course, the student should be able to

- 1. Understand the approximation problems particularly in Chebyshev and least squares norms.
- 2. Interpolate data using Lagrange and Hermite interpolation.
- 3. Understand and apply Chebyshev and least squares polynomial approximation.
- 4. Comprehend the properties of orthogonal polynomials with selective applications.
- 5. Find Chebyshev and least squares solution of overdetermined systems of linear equations.

- 6. Construct cubic and basic B-splines and conduct underlying error analysis.
- 7. Have the basic knowledge of Padé and rational approximation with simple applications.

The Course Grading Policy:

	Date	Time	Place	Materials	Percentage
Exam I	TBA	TBA	TBA	TBA	25% (75 pts)
Exam II	TBA	TBA	TBA	TBA	25% (75pts)
Final Exam	TBA	TBA	TBA	comprehensive	35% (105 pts)
Homeworks	Homeworks, proje	ects, presenta	itions		15% (30pts)

Missing The Midterm Exam:

In case a student misses an exam (Exam I, Exam II, or the Final Exam) for a legitimate reason (such as medical emergencies), he must bring an official excuse from Students Affairs. Otherwise, he will get zero in the missed exam.

Attendance:

Attendance is a University Requirement (see p. 38 of the Undergraduate Bulletin 2006-2009). A DN grade will be awarded to any student who accumulates 09 unexcused absences.

Academic Integrity:

All KFUPM policies regarding ethics apply to this course.

Pacing Schedule

Week	Торіс				
1	Univariate Interpolation				
2	Best approximation in normed linear spaces				
3	Best approximation in normed linear spaces				
4	Approximate solution of over-determined system of linear equations				
5	Chebyshev Interpolation				
6	Piecewise polynomial approximation				
7	Multivariate Interpolation				
8	Multivariate Interpolation				
9	Splines				
10	Bernstein Polynomials				
11	Rational approximation by the exchange algorithm				
12	Least squares approximation				
13	Properties of orthogonal polynomials				
14	Approximation to periodic functions				
Eid Al-Fitr Holidays: April 24-May 05					
15	The theory of best L 1 approximation				