King Fahd University of Petroleum & Minerals

College of Computing and Mathematics

Department of Mathematics

MATH-578: Applied numerical methods II Instructor: Kassem Mustapha

Course Description:

This course introduces finite element, finite difference and finite volume methods, applications to steady-state, diffusion and wave models. Stability and convergence. Homogenization, upscale and multiscale methods. Implementations and computer lab sessions.

Credit hours: 3 hours **Pre-requisite**: Graduate standing

i ie-iequisite. Graduate static

References:

- 1. Grossmann, Roos, and Stynes, Numerical treatment of partial differential equations (Vol. 154), 2007.
- 2. Larsson and Thomee, Partial Differential Equations with Numerical Methods, Springer, 2003.
- 3. Efendiev and Hou, Multiscale finite element methods: theory and applications (Vol. 4), 2009.
- 4. Knabner and Angermann, Numerical Methods for Elliptic and Parabolic PDEs, 2003.

Course Learning Outcomes: By the end of this course, students will be able to:

- 1. Describe finite difference and Galerkin finite element methods.
- 2. Apply finite difference, finite element and finite volume methods for solving steady-state and time-dependent models
- 3. Evaluate the accuracy and stability of the numerical solutions
- 4. Construct finite element solutions in multiscale domains.

Course Grade

The final grade will be based on the following distribution:

Assignments and tests	40%
Midterm Exam	25%
Final Exam	35%
Total	100%

Note: Any student will get less than 50 % will be given an F grade.

Attendance: Students are expected to attend all classes. Six unexcused absences lead to a DN grade.

Office hours: Monday and Wednesday from 4 pm till 5 pm, or by appointments, Email: <u>kassem@kfupm.edu.sa</u>, Office: Building 5, 203-5

Topics

2

1 • Introduction and motivations

Elliptic and Mixed Type Problems in 1D and 2D

- Finite Difference Method
 - Matrix Structure
 - Stability
 - Convergence
- **3** Finite Element Method
 - Quadrature
 - Stability
 - Interpolations
 - Convergence

Time Dependent Models

- 4 Time-Stepping Finite Differences
 - Semi-Discrete Finite Elements
 - Finite Element/Differences
 - Implementations
 - Stability Analysis
 - Simulations
- 5 Finite Volume Method