King Fahd University of Petroleum and Minerals
 Department of Mathematics

MATH 578: Applied Numerical Methods II
Midterm Exam: Semester 231 (120 minutes)

Note: Use of electronic devices such as smartphones are not allowed. Each question has five points.
Total Points: 25.

Instructror: Abdullah Shah (abdullah.shah.1@kfupm.edu.sa)

NAME:

STUDENT ID:

Q1. Use finite difference method with $h=k=1$ to write the matrix form of

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<3, \quad 0<y<3
$$

subject to the boundary conditions

$$
\begin{array}{lll}
u(x, 0)=0, & & u(x, 3)=x \\
u(0, y)=0, & u(3, y)=y
\end{array}
$$

NAME:

STUDENT ID:

Q2. Approximate the solution to the equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, \quad 0<t \\
u(0, t) & =u(1, t)=0, \quad 0<t \\
u(x, 0) & =\sin 2 \pi x, \quad 0 \leq x \leq 1, \\
\frac{\partial u(x, 0)}{\partial t} & =2 \pi \sin 2 \pi x, \quad 0 \leq x \leq 1
\end{aligned}
$$

by finite difference method with $h=0.5$ and $k=0.1$. Find the solution $u(x, t)$ at $t=0.2$.

Q3. Use $h=k=0.25$, write the matrix (discrete) form $A w^{j}=w^{j-1}$ of

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial^{2} x}=0, \quad 0<x<1, \quad 0<t
$$

subject to the boundary and initial conditions

$$
\begin{aligned}
u(0, t) & =u(1, t)=0, \quad 0<t \\
u(x, 0) & =x(1-x)
\end{aligned}
$$

using backward difference method.

Q4. What are the key components of Finite Element Method. Write the weak form (varitional form) of the following boundary value problem.

$$
-u^{\prime \prime}(x)=f(x) \quad 0<x<1, \quad u(0)=u(1)=0
$$

Q5. Define of the following spaces.
i. $C(\Omega)$ ii. $C^{\infty}(\Omega)$ iii. $L^{2}(\Omega)$ iv. $H^{1}(\Omega)$ v. $H_{0}^{2}(\Omega)$, where $\Omega=\left[\begin{array}{ll}0 & 1\end{array}\right]$.

