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Problem 1 (20 points)

Let Ω be a subset of Rn. Show that Ω is convex if and only if it contains all convex
combinations of its elements.
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Problem 2 (20 points)

(a) Let Ω be a nonempty convex subset of Rn. Show that x ∈ riΩ if and only if for
every y ∈ Ω there exists a γ > 1 such that x + (γ − 1)(x − y) ∈ Ω.

(b) Let Ω1 and Ω2 be nonempty convex sets of Rn and Rm, respectively. Show that

ri (Ω1 × Ω2) = riΩ1 × riΩ2.
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Problem 3 (20 points)

In the Euclidean space R4, consider the set Ω defined as

Ω =
{
(x1, x2, x3, 1) ∈ R4 : 1 − |x1| − |x2| − |x3| ≥ 0

}
(a) Show that Ω is a nonempty convex set.

(b) Find (no proof is necessary)

(i) intΩ (ii) riΩ (iii) affΩ (iv) the linear space parallel to affΩ
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Problem 4 (10 points)

Prove that the function f : Rn → R defined as

f (x) =
1

η(x)
+ exT Ax

is convex, where η is a concave function [i.e −η is convex] with η(x) > 0 for all x ∈ Rn

and A is a positive semidefinite symmetric n × n matrix.
[Hint: show that the individual summand functions are convex]
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Problem 5 (20 points)

A function f : Rn → R is said to be quasiconvex if f (λx + (1− λ)y) ≤ max{ f (x), f (y)}
for all x, y ∈ Rn and 0 < λ < 1.

(a) Show that a function f is quasiconvex if and only if for any α ∈ R the level set
{x ∈ Rn : f (x) ≤ α} is a convex set.

(b) Give an example of a quasiconvex function that is not convex.
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Problem 6 (10 points)

Let Ω be a nonempty convex subset of Rn and let f : Rn → R be differentiable real-
valued function over Rn. Suppose that the following inequality holds

f (y) ≥ f (x) + (y − x)T∇ f (x) for all x, y ∈ Ω.

Show that f is convex.
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