Department of Mathematics, King Fahd University of Petroleum & Minerals, Math 581 Midterm, 2024-2025 (242) Time Allowed: 120 Minutes

ID#:

- Mobiles, calculators and smart devices are not allowed in this exam.
- Write neatly and eligibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		12
2		12
3		12
4		10
5		12
6		12
Total		70

Maximize $z = 2x_1 - x_2 + x_3$

subject to

$$2x_1 + x_2 \leq 10$$
$$x_1 + 2x_2 - 2x_3 \leq 20$$
$$x_1 + 2x_3 \leq 5$$
$$x_1, x_2, x_3 \geq 0.$$

 $Q2: {\rm Solve}$ by Dual Simplex Method

Maximize $z = -2x_1 - x_2$

subject to

 $-3x_1 - x_2 \leq -3$ $-4x_1 - 3x_2 \leq -6$ $-x_1 - 2x_2 \leq -3$

 $x_1, x_2 \ge 0.$ Write the solution of the primal problem from the optimal table of dual simplex.

Q3(a) : State and prove strong duality theorem.

(b): Use the information of the following primal problem (P) to solve the dual problem by Complementary Slackness conditions.

Maximize $z = 2x_1 + 4x_2 + 3x_3 + x_4$

subject to

 $\begin{aligned} &3x_1 + x_2 + x_3 + 4x_4 \leq 12 \\ &x_1 - 3x_2 + 2x_3 + 3x_4 \leq 7 \\ &2x_1 + x_2 + 3x_3 - x_4 \leq 10 \end{aligned}$

 $x_1, x_2, x_3, x_4 \ge 0,$ where the solution of the primal problem is

 $(x_1, x_2, x_3, x_4) = (0, 10.4, 0, 0.4)$

Q4: Consider the linear programming problem { $Min \ c^T x : Ax = b, x \ge 0$ }, where

$$A = \begin{bmatrix} 1 & 1 & -2 & 2 \\ 1 & -1 & 2 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 1 \end{bmatrix} and \quad c = \begin{bmatrix} 2, & 0, & -1, & 2 \end{bmatrix}^T.$$

Apply the Revised Simplex method to solve the above problem starting with the basis $B = \{1, 2\}.$

 $Q5: {\rm Consider}$ the following Transportation Model

	D_1	D_2	D-3	Supply
S_1	2	2	3	10
S_2	4	1	2	15
S_3	1	3	1	40
Demand	20	15	30	

(a) Find the initial basic feasible solution by North-West corner method.

(b) Find the optimal solution by u-v method.

Q6(a): Write the dual of the following linear programming problem

Minimize $z = 5x_1 + 6x_2$

subject to

$$x_1 + 2x_2 = 5$$

 $-x_1 + 5x_2 \ge 3$
 $4x_1 + 7x_2 \le 8$

 $x_2 \ge 0.$, x_1 is unrestricted.

(b) Consider the system of equations

 $3x_1 + x_2 + 2x_3 - x_4 = a$ $x_1 + x_2 + x_3 - 2x_4 = 3$ $x_1, x_2, x_3, x_4 \ge 0.$

If $x_1 = 1, x_2 = b, x_3 = 0, x_4 = c$ is a basic feasible solution of the above system (where a, b and c are real constants), then $a + b + c = \dots$ (Justify your answer).