

MAJOR EXAM 2

Duration: 120 minutes

ID:	
NAME:	

- Show your work.
- Use the space provided to answer the question. If the space is not enough, continue on the back of the page.

Problem	Score
1	/20
2	/20
3	/25
4	/25
5	/10
Total	/100
Score	/20

Problem 1 (20 points)

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a differentiable at \bar{x} . Suppose that $\mathbf{d} \in \mathbb{R}^n$ is such that $\nabla f(\bar{x})^t \mathbf{d} < 0$.

- (a) Show that there exists a $\bar{\lambda} > 0$ such that $f(\bar{x} + \lambda \mathbf{d}) < f(\bar{x})$ for each $\lambda \in (0, \bar{\lambda})$.
- (b) Show that if \bar{x} is a local minimum, then $\nabla f(\bar{x}) = \mathbf{0}$.
- (c) Give a counter example to (b) with $f : \mathbb{R}^2 \rightarrow \mathbb{R}$.

Problem 2 (20 points)

Let X be a nonempty open set in \mathbb{R}^n and $g_i : \mathbb{R}^n \rightarrow \mathbb{R}$ for $i \in \{1, \dots, m\}$. Define the sets

$$S = \overbrace{\{x \in X : g_i(x) \leq 0 \text{ for } i \in \{1, \dots, m\}\}}^{\text{feasible set}} \quad \text{and} \quad I = \underbrace{\{i : g_i(\bar{x}) = 0\}}_{\text{index set for active constraints}}$$

Let $\bar{x} \in S$ and assume that

- (1) $\{g_i\}_{i \in I}$ are differentiable at \bar{x}
- (2) $\{g_i\}_{i \notin I}$ are continuous at \bar{x} ,
- (3) $\{g_i\}_{i \in I}$ are strictly pseudoconvex at \bar{x}

Show that

$$G_0 = D,$$

where

$$\begin{aligned} G_0 &= \{\mathbf{d} : \nabla g_i(\bar{x})^t \mathbf{d} < 0 \text{ for each } i \in I\} \\ D &= \{\mathbf{d} : \mathbf{d} \neq \mathbf{0}, \text{ and } \bar{x} + \lambda \mathbf{d} \in S \text{ for all } \lambda \in (0, \delta) \text{ for some } \delta > 0\}. \end{aligned}$$

Problem 3 (25 points)

Consider the following nonlinear problem

$$\min \left(x_1 - \frac{9}{4} \right)^2 + (x_2 - 2)^2$$

subject to

$$x_2 - x_1^2 \geq 0$$

$$x_1 + x_2 \leq 6$$

$$x_1, x_2 \geq 0.$$

1. Write the KKT optimality conditions and verify that these conditions hold true at the point $\bar{x} = \left(\frac{3}{2}, \frac{9}{4} \right)^t$.
2. Interpret the KKT conditions at \bar{x} graphically.
3. Show that \bar{x} is indeed the unique global optimal solution.

Problem 4 (25 points)

Consider the nonlinear problem

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{subject to} & \\ & x_1 + x_2 - 4 \geq 0 \\ & x_1, x_2 \geq 0. \end{array}$$

- (a) Verify that the optimal solution is $\bar{x} = (2, 2)^t$ with $f(\bar{x}) = 8$.
- (b) Let $X = \{(x_1, x_2) : x_1 \geq 0, x_2 \geq 0\}$, then write the Lagrangian dual problem.
- (c) Verify that there is no duality gap for this problem.
- (d) Starting with $x = (3, 3)^t$, perform one iteration of the cutting plane algorithm, check optimality and set-up the master program of the second iteration only (do not solve this in the second iteration).

Problem 5 (10 points)

Derive the Lagrangian dual of the linear program

$$\begin{array}{ll} \max & c^t x \\ \text{subject to} & Ax \leq b \end{array}$$

