King Fahd University of Petroleum & Minerals Department of Mathematics Math 583 – Syllabus

Semester 211

Dr. Rachid Ait-Haddou (aithaddou@kfupm.edu.sa)

Course Number	MATH 583
Course Title	Computer Graphics: Modeling and Processing
Course Main Objectives	 Provide a thorough overview of methods for generating free form curves and surfaces Assessing 3D Models quality Provide basic mathematical concepts in computer graphics and geometric modeling and processing
Course Leaning Outcomes	 By the end of this course, students will be able to: 1- Explain the fundamentals of geometric modeling and processing 2- Apply algorithms for generating free form curves and surfaces 3- Use subdivision methods for generating surfaces 4- Analyze and describe geometric shapes related to computer graphics 5- Create meshes from point cloud
Catalog Course Description	This course introduces Central concepts of geometric modeling, basic shape representations (parametric and implicit curves and surfaces, meshes, point clouds), freeform curve and surface design in spline representation, subdivision surfaces, surface quality assessment, and geometry processing on meshes.
Pre-Requisites	Graduate Standing

TEXTBOOK:

• Farin, Gerald E., Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, 2002.

REFERENCES:

- Liao, Wenhe, Hao Liu, and Tao Li. *Subdivision Surface Modeling Technology*. Springer Singapore, 2017.
- Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). *Polygon mesh processing*. CRC press.
- Bærentzen, J. Andreas, et al. *Guide to computational geometry processing: foundations, algorithms, and methods.* Springer Science & Business Media, 2012.

ASSESSEMENT:

- Quizzes: 10%
- Assignments: 30%
- Major Exam: 30%
- Final Exam: 30% (Comprehensive)

OFFICE HOURS:

Monday and Wednesday 10:00 am-- 12:00 am (or by Appointment)

COURSE OUTLINE

1- Bezier curves

de Casteljau Algorithm, Subdivision, Blossom, degree elevation, Interactive design

2- B-spline Curves

Composite Bezier curves, B-spline construction and interpolation

3- Rational Bezier and B-spline Curves

4- Tensor Product Patches

Bilinear interpolation, de Casteljau algorithm, Blossom, Composite surfaces, B-spline surfaces. Point clipping and interactive design

5- Bezier Triangles

Bernstein polynomials, de Casteljau algorithm, Triangular blossom, Clough-Tocher and Powell-Sabin interpolants

6- Shape Assessment

Curvature plots, Curves and surfaces smoothing, Surface interrogation

7- Subdivision Curves and Surfaces

Catmull-Clark, Doo-Sabin, Loop and butterfly subdivisions

8- Geometry Processing on Meshes

Point cloud meshing, mesh simplification and parametrization