KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DEPARTMENT OF MATHEMATICS

DHAHRAN, SAUDI ARABIA

Term 242

MATH 585: Computational Inverse Problems.

Instructor: Rachid Ait-Haddou

Email: rachid.aithaddou@kfupm.edu.sa

Office Hours: Monday and Wednesday, 9:00 am to 11:00 am or by appointment

Prerequisite: Graduate Standing

Credit Hours: (3-0-3)

Textbook/References:

- 1. Richard Aster: Parameter Estimation and Inverse Problems. (Main)
- 2. Christian Hansen, Discrete inverse problems insight and algorithms, 2010
- 3. William Menke: Geophysical Data Analysis: Discrete Inverse Theory.

Course Description: This course introduces students to fundamental concepts in linear and nonlinear inverse problems. Emphasis is placed on describing how to integrate various information sources from measured data and prior knowledge about the inverted model. Subjects studied will include topics and tools such as: Regression, Least squares, Maximum likelihood estimation, Rank deficiency, Ill-conditioning, Generalized and Truncated SVD solutions, Regularizations (Tikhonov, spectral filtering), proximal and primal-dual iterative schemes, Nonlinear inverse (gradient-based and global optimization methods), OCCAM method. Computer lab sessions will be organized to combine classroom learning with hands-on applications.

Prerequisites by Topics: Calculus, Linear Algebra, Probability and Statistics, Programming skills

Computer Usage: Computer software is essential for this course. Mainly we will be using Python as the computational platform.

Attendance: Based on KFUPM attendance policy.

Communication: For regular announcements, students are advised to check Teams and Blackboard regularly.

Academic Integrity: All KFUPM policies regarding ethics and academic honesty apply to this course

Attendance: (As per KFUPM policy) **DN** is assigned for 20% (9) unexcused absences and 33% (15) overall absence (excused and unexcused)

Grading:

Activity	Weight
Assignments (Including programming tasks):	25%
Project(s)	20%
Midterm exam	25%
Final Exam	30%

Course Objectives:

Introduce students to fundamental concepts in linear and nonlinear inverse problems		
Introduce data scientific software, toolboxes, and libraries		
Solve problems in linear algebra and optimization topics related to data science.		
Application of mathematical topics to basic neural network design.		

Student Learning Outcomes: After completion of the course, the students should be able to

Explain how to set the inverse problems		
Solve well posed and ill posed problems		
Apply various regularization methods and how to choose the regularization parameters		
Apply different linearization techniques for solving nonlinear inverse problems.		

SCHEDULE and COVERAGE of MATERIAL

Week No. (Dates)	Reference	Topics
Week 1	Chapter 1	Introduction
		What is an inverse problem
		Continuous vs Discrete inverse problems
		Linear vs Nonlinear inverse problems
	Chapter 1	Discretizing Integral Equations
		Application to continuous inverse problems (CIPs)
Week 2		Code Illustration
		Implement the midpoint discretization of CIP
	Chapter 2	Linear Regression
	2.1	Least Squares
Week 3	Chapter 2	
	2.2	Weighted Least squares
	2.5	L1-Regression
		•
Week 4	Chapter 3	Rank Deficiency and Ill Conditioning
	3.1	SVD and Generalized Inverse

	3.2	Resolution of Generalized Inverse Solution
Week 5	3.3 3.5	 Instability of the generalized inverse solution Discrete III-Posed Problems
Week 6		
	Truncated Singular value decomposition	
	Chapter 4 4.2 4.3	 Tikhonov Regularization SVD implementation of Tikhonov regularization Resolution of Tikhonov Solution
Week 7		 Code Illustration: Solving rank-deficient systems by SVD Solving ill-conditioned systems by TSVD, Tikhonov regularization
		Goal: This illustrates what we have learned in chapters 3 and 4 with respected dealing with rank-deficient system and Ill-conditioning.
Week 8	Chapter 6 6.3	 Iterative Methods Gradient descent method and Stochastic gradient descent method
	6.4	Conjugate gradient descent method
Week 9	6.4 6.6	 Conjugate gradient descent method Resolution Analysis for iterative methods
Week 10		 Code Illustration: Implement the iterative algorithms for linear systems as well as regularized linear systems
Week 11	Chapter 7 7.1 7.3	 Sparsity Regularization Sparsity regularization Sparse representation and compressed sensing
Week 12	Chapter 9 9.2 9.3	Nonlinear regression Newton's method for solving nonlinear equation GN and LM methods for solving nonlinear least squares
Week 13	Chapter 9 9.3	Nonlinear Regression GN and LM methods for solving nonlinear least squares
		 Code Illustration: Implement the GN and LM methods for estimating parameters in a nonlinear regression model
Week 14	Chapter 10 10.1 10.2	Nonlinear Inverse Problem Regularizing Nonlinear least squares problem OCCAM's Inversion

Week 15		Project Presentation	
Final Project report submission			