King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 601
Midterm Exam- Term 231
Monday, November 13, 2023
Allowed Time: 120 minutes
Instructor: Dr. Boubaker Smii

Name: \qquad
ID \#: \qquad
Section \#: \qquad Serial Number: \qquad

Instructions:

1. Write clearly and legibly. You may lose points for messy work.
2. Show all your work. No points for answers without justification !

Question \#	Grade	Maximum Points
1		08
2		06
3		08
4		07
5		12
6		11
7		60

Exercise 1:(08)

A- Let X be a random variable with probability density function (pdf):

$$
\begin{equation*}
f(x)=x e^{-\frac{x^{2}}{2}}, 0<x<\infty \tag{a}
\end{equation*}
$$

Find the probability density of $Y=X^{2}$.

B- Let X, Y be two random variables with joint probability density

$$
f(x, y)= \begin{cases}\frac{1}{2} y e^{-x y}, & 0 \leq x \leq \infty, 0<y<2 \tag{b}\\ 0, & \text { otherwise }\end{cases}
$$

Find $\mathbb{E}\left[\left.e^{\frac{X}{2}} \right\rvert\, Y=1\right]$.

C- suppose that X_{1} and X_{2} are independent exponential random variables with respective means $\frac{1}{\lambda_{1}}$ and $\frac{1}{\lambda_{2}}, \lambda_{1}, \lambda_{2}>0$. Find $P\left\{X_{1}<X_{2}\right\}$.

Exercise 2: (06)
If X and Y are continuous random variables with corresponding probability densities and characteristic functions f_{X}, ϕ_{X} and f_{Y}, ϕ_{Y} respectively. Show that

$$
\begin{equation*}
\int_{\mathbb{R}} \phi_{X}(y) f_{Y}(y) e^{-i t y} d y=\int_{\mathbb{R}} \phi_{Y}(x-t) f_{X}(x) d x \tag{c}
\end{equation*}
$$

Exercise 3:(08)

A-(05) Consider the Markov chain $\left\{X_{n}, n \geq 0\right\}$ with three states, $S=1,2,3$, that has the following transition matrix

$$
P=\left(\begin{array}{lll}
0.2 & 0.3 & 0.5 \\
0.4 & 0.2 & 0.4 \\
0.3 & 0.6 & 0.1
\end{array}\right)
$$

1. Draw the state transition diagram for this chain.
2. Determine $P\left(X_{8}=3, X_{7}=1, X_{5}=2 \mid X_{3}=2, X_{2}=1\right)$.

B-(03) A particle moves among states 0,1 and 2 according to a Markov process with the following transition probability matrix.

$$
P=\left(\begin{array}{ccc}
0.6 & a & 0.1 \\
b & 0.3 & 0.4 \\
0.3 & 0.2 & c
\end{array}\right)
$$

where a, b and c are real numbers.
Let X_{n} be the position of the particle after the n-th move. Suppose that at the beginning, the particle is in state 1 . Determine the probability $P\left[X_{2}=k\right]$ where $k=0,1,2$.

Exercise 4: (07)

Consider the geometric Brownian motion given by

$$
\begin{equation*}
X_{t}=e^{\mu t+\sigma B_{t}}, t \geq 0, \sigma>0, \mu \in \mathbb{R} . \tag{d}
\end{equation*}
$$

1- Explain why the classical integration fails to integrate the Brownian sample paths.

2- Give two major differences between the Riemann and Itô integrals.

3- Find $\mathbb{E}\left(X_{t}\right)$.

Exercise 5: (08)

Let $\left\{B_{t}, t \geq 0\right\}$ be a standard Brownian motion.
A- (03) Show whether or not $W_{t}=t B_{\frac{1}{t}}, t>0$ and $W_{0}=0$ is also a Brownian motion.

B- (05) Given that $B_{t}^{k}=\int_{0}^{t} k B_{s}^{k-1} d B_{s}+\frac{k(k-1)}{2} \int_{0}^{t} B_{s}^{k-2} d s$, for , $k \geq 2$.
We define

$$
\begin{equation*}
X_{k}(t):=\mathbb{E}\left(B_{t}^{k}\right), \quad k=2,3, \ldots ; t \geq 0 . \tag{e}
\end{equation*}
$$

1)- Prove that $X_{k}, k \geq 2$ is given in terms of a Riemann integral only.
(Give explicitely the expression of X_{k}.)
2)- Evaluate $\mathbb{E}\left(B_{t}^{4}\right)$ and $\mathbb{E}\left(B_{t}^{6}\right)$.
(Hint: You may use B)-1))

Exercise 6:(12)

Let $\left\{B_{t}, t \geq 0\right\}$ be a standard Brownian motion.
1-(03) Show that $\int_{0}^{t} s B_{s} d B_{s}=\alpha_{t}+a(t)+\int_{0}^{t} \gamma_{s} d s$, where α_{t}, γ_{t} are given stochastic processes and $a(t)$ a function of t.

2-(06)Evaluate the following integrals:
i) $-\int_{0}^{t} B_{s}^{3} d B_{s}$.
ii) $-\int_{0}^{t}\left(B_{s}^{2}-s\right) d B_{s}$.

3 -(03) Use the results in 1) and 2) to show that $\int_{0}^{t}\left(B_{s}^{3}-3 s B_{s}\right) d B_{s}=\eta(t)+b(t)$, where $\eta(t)$ is a function of $B(t)$ and $b(t)$ is a function of t.

Exercise 7: (11)
Let X_{t}, Y_{t} be Itô processes in \mathbb{R}.
1)-(04) Prove that:

$$
X_{t} Y_{t}=X_{0} Y_{0}+\int_{0}^{t} Y_{s} d X_{s}+\int_{0}^{t} X_{s} d Y_{s}+\int_{0}^{t} d X_{s} d Y_{s}
$$

2)-(07) Let $\Phi_{t}=\exp \left(-\alpha B_{t}+\frac{1}{2} \alpha^{2} t\right), \alpha \in \mathbb{R}$.
i)- Find $d \Phi_{t}$.
ii)- Given that: $d Y_{t}=r d t+\alpha Y_{t} d B_{t}, r \in \mathbb{R}$. Prove that $Y_{t}=Y_{0} \Phi_{t}^{-1}+r \Phi_{t}^{-1} \int_{0}^{t} \Phi_{s} d s$ (Hint: Use 1)).

