King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 601 Midterm Exam– Term 241 Monday, November 18, 2024

Allowed Time: 120 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justifications !

Question $\#$	Grade	Maximum Points
1		11
2		15
3		10
4		12
5		06
6		09
7		14
8		13
Total:		90

Exercise 1:(11)

A-(05) Let X_1 and X_2 be two independent exponential random variables with respective means $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$. Prove that

$$P\{X_1 < X_2\} = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

B-(06) Let $N(t), t \ge 0$ be a Poisson process with parameter λ . Show that $\lim_{t \to \infty} \frac{N(t)}{t} = \lambda$ a.s.

Hint: You may use the Strong law of large numbers : $\lim_{n \to \infty} \frac{N(n)}{n} = \lambda$ a.s.

Exercise 2:(15)

A-(04) A particle moves among states 0,1 and 2 according to a Markov process with the following transition probability matrix.

$$P = \left(\begin{array}{rrr} 0.6 & a & 0.1 \\ b & 0.3 & 0.4 \\ 0.3 & 0.2 & c \end{array}\right)$$

where a, b and c are real numbers.

Let X_n be the position of the particle after the *n*-th move. Suppose that at the beginning, the particle is in state 1. Determine the probability $P[X_2 = k]$ where k = 0, 1, 2.

B-(11) Consider a birth process and let $\lambda_i = \nu_i p_{i(i+1)}$ be the rate at which a birth occurs when the process is in state *i* and $p_{i(i+1)}$ its corresponding probability, and ν_i is the rate at which the process makes a transition when in state *i* into *j*. Let also $q_{ij} = \nu_i P_{ij}$ be the instantaneous transition rates, where P_{ij} is the transition probabilities from state *i* into state *j*. Given that the kolmogorov's forward equations are given by:

$$P'_{ij}(t) = \sum_{k \neq j} q_{kj} P_{ik}(t) - \nu_j P_{ij}(t).$$
 (a)

i)-(05) Find the forward equations for the pure birth process. (Discuss the cases i = j and $j \ge i + 1$.)

ii)-(06) Given that $P_{ii}(0) = 1$, deduce from the result of question (i) that

$$\begin{cases} P_{ij}(t) = \lambda_{j-1} e^{-\lambda_j t} \int_0^t e^{\lambda_j s} P_{i,j-1}(s) ds, \ j \ge i+1. \\ P_{ii}(t) = e^{-\lambda_i t}, \ i \ge 0. \end{cases}$$
(b)

Exercise 3: (10)

A-(06)Let Y(t), $t \ge 0$ be a Brownian motion process with drift coefficient μ and variance parameter σ^2 . We define a stochastic process $\{X(t), t \ge 0\}$ by: $X(t) = e^{Y(t)}$. 1-(04) Identify the process X(t) and find its expectation.

2-(02) Give some applications of X(t).

B-(04) In the following B_t , $B_1(t)$ and $B_2(t)$, $t \ge 0$ are standard Brownian motions. Show whether or not the following processes are martingales w.r.t the σ -algebra $\{\mathcal{F}_t\}$. 1- $M_t := B_t^2 - t$

2- $X_t = B_1(t)B_2(t)$, where $(B_1(t), B_2(t))$ is a 2-dimensional Brownian motion.

Exercise 4: (12)

A-(06) Let $t_0^n < t_1^n < \cdots < t_n^n = T$, where $t_i^n = i\frac{T}{n}$, be a partition of the interval [0,T] into n equal parts. We denote by

$$\Delta_i^n B = B(t_{i+1}^n) - B(t_i^n) \tag{c}$$

the corresponding increments of the Brownian motion B(t).

Show that

$$\lim_{n \to +\infty} \sum_{i=0}^{n-1} (\Delta_i^n B)^2 = T, \quad in \ L^2.$$
 (d)

B-(06)

i)-(02) Give major reasons behind the failure of classical integrations methods, when applied to stochastic processes.

ii)-(04) Provide two main differences between the Riemann integrals and Itô integrals.

Exercise 5: (06)

Let S_t be the price of a stock at time t. Suppose that stock price is modelled as a geometric Brownian motion $S_t = S_0 e^{\mu t + \sigma B_t}$, where B_t is a standard Brownian motion.

1- Suppose that the parameter values are $\mu = 0.055$ and $\sigma = 0.07$. Given that $S_5 = 100$, find the probability that S_{10} is greater than 150. (you may express the result as $\Phi(x)$, where Φ is the standard Normal distribution function and x a real number.)

Exercise 6:(09)

A- (04)Let $\{B_t, t \ge 0\}$ be a standard Brownian motion and let f be a function having continuous derivative on [a, b].

a)- Define the Itô stochastic integral on [a, b].

b)- Find the expectation of the Itô integral.

B-(05) Prove the Itô isometry.

Exercise 7:(14)

In the following B(t), $B_1(t)$, $B_2(t)$ and $B_3(t)$ are standard Brownian motions. **A**-(09) Let $X_t = e^{B_1(t)} \cos(B_2(t))$, $Y_t = e^{B_1(t)} \sin(B_2(t))$, $Z_t = e^{B_1(t)}$. Write down dX_t , dY_t and dZ_t as $\alpha Y_t + \beta X_t + aZ_t$, $\gamma X_t + \eta Y_t + bZ_t$ and $\delta Z_t + cX_t + dY_t$ respectively. (Here α , β , γ , η , δ , a, b, c, d) are coefficients to be determined !

B-(05) Write the following stochastic processes X_t on the standard form

$$dX_t = u\,dt + v\,dB_t,$$

for suitable choices of u and v. i)-(03) $X_t = (B_1(t) + B_2(t) + B_3(t), B_2^2(t) - B_1(t)B_3(t))$, where (B_1, B_2, B_3) is 3-dimensional.

ii)-(02) $X_t = \frac{B_t}{1+t}$

<u>Exercise 8:</u> (13) Let $\{B_t, t \ge 0\}$ be a standard Brownian motion defined on [0, T]. <u>Part A(07)</u>: 1-(02) Prove that $\int_0^T B_t dt = \int_0^T (T-t) dB_t$.

2-(02) Write B_T^2 in integral form.

3-(03) Prove that $B_T^3 = \int_0^T X_t dB_t$, where X_t is a stochastic process to be determined. (**Hint:** You may find first $d(B_t^3)$ then use the results of question 1)

<u>Part B</u>(06):

Write the following stochastic processes in integral forms:

1-(03) e^{B_T} , by considering the Itô exponential.

2-(03) $\sin(B_T)$