KFUPM-DEPARTMENT OF MATHEMATICS-MATH 645-EXAM I-TERM 231

MATH 645: EXAM I, TERM (231), OCTOBER 11, 2023

EXAM I- MATH 645 Duration: 150 mn

Student Name:

ID:

(1) Explain why G is Eulerian.

(2) Decompose G into cycles.

(3) Find an Euler tour of G starting from vertex "Start".

Solution. 1. It is clear that the degree of every vertex of G is even. So G is Eulerian.

2.A possible decomposition into cycle:

3. An Euler tour starting from the vertex Start:

$$
S-D-B-C-G-D-C-F-G-H-D-E-H-I-E-S
$$

□

Exercise 2. Let $n \geq 4$, and S be a set of cardinality n. We let $PG[n, 2]$ be the simple graph with vertices the subsets of S of cardinality 2, and adjacency relation given by: A, B are adjacent if and only if $A \cap B = \emptyset$.

- (1) Show that $PG[n, 2]$ is $\frac{(n-2)(n-3)}{2}$ -regular and has $\frac{n(n-1)}{2}$ vertices.
- (2) Evaluate the number of edges of $PG[n, 2]$.
- (3) Show that if $n = 4$, then $\mathbf{PG}[n, 2]$ is isomorphic to $3K_2$ (three copies of K_2). **IN ALL THE REMAINING QUESTIONS, WE WILL ASSUME THAT** $n > 5$.
- (4) Show that $\text{PG}[n, 2]$ is connected and $d(u, v) = 2$, for any two distinct nonadjacent vertices.
- (5) Show that PG[n, 2] is Eulerian if and only if either $n \equiv 2 \pmod{4}$ or $n \equiv 3$ (mod 4).
- (6) Show that $\mathbf{PG}[n, 2]$ contains a triangle if and only if $n \geq 6$.
- (7) Show that $\text{PG}[n, 2]$ contains a quadrilateral (a 4-cycle) if and only if $n \geq 6$.

Solution.

1. Let A be a vertex of $PG[n, 2]$. The neighborhood of A is given by:

$$
\mathbf{N}(A) = \{ B \subseteq [n] : A \cap B = \emptyset \} = \{ B : B \subseteq [n] \setminus A \text{ and } |B| = 2 \} = \mathcal{P}([n] \setminus A, 2),
$$

where $\mathcal{P}([n]\setminus A, 2)$ is the set of all subsets of $[n]\setminus A$ with size 2. So $d(A) = \binom{n-2}{2}$ $\binom{-2}{2} =$ $\frac{(n-2)!}{(n-4)!2!} = \frac{(n-2)(n-3)}{2}$ $\frac{2^{(n-3)}}{2}$.

It follows that $\mathbf{PG}[n,2]$ is $\frac{(n-2)(n-3)}{2}$ -regular.

2. The vertex set of $\mathbf{PG}[n,2]$ is $\mathcal{P}([n],2)$. By Euler's Sum of Degrees Theorem, we have

$$
\sum_{A \in \mathcal{P}([n],2)} d(A) = 2m,
$$

where
$$
m
$$
 is the number of edges of $\text{PG}[n, 2]$.

Hence $|\mathcal{P}([n],2)| \times \frac{(n-2)(n-3)}{2} = 2m$, that is $\binom{n}{2}$ $\binom{n}{2} \times \frac{(n-2)(n-3)}{2} = 2m$, and consequently, $m =$ $n(n-1)(n-2)(n-3)$ $\frac{2(10-3)}{8}$.

3. For $n = 4$, the graph $\overline{PG[4, 2]}$ looks like:

$$
\begin{array}{cccc}\n\{1,2\} & \{1,3\} & \{2,3\} \\
\Big\downarrow & & \Big\downarrow & \\
\{3,4\} & \{2,4\} & \{1,4\}\n\end{array}
$$

which is, clearly, isomorphic to $3K_2$.

4. Let A, B be two distinct nonadjacent vertices. Then $|A \cap B| = 1$. So $|A \cup B| = 1$ 2+2−1 = 3. Consequently $\left| [n] \setminus (A \cup B) \right| \geq 2$. Taking any subset C of $[n] \setminus (A \cup B)$ of size 2, C is adjacent to both A and B. It follows that $\mathbf{PG}[n, 2]$ is connected and $d(A, B) = 2$, for all $A \neq B$, nonadjacent.

5. As $\mathbf{PG}[n,2]$ is $\frac{(n-2)(n-3)}{2}$ -regular, it is Eulerian iff $\frac{(n-2)(n-3)}{2}$ is even, which is equivalent to 4 divides $(n-2)(n-3)$. But as $gcd(n-2, n-3) = 1$, $PG[n, 2]$ is Eulerian iff either 4 divides $n - 2$ or 4 divides $n - 3$, which means $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$.

6. A triangle (A, B, C) in PG $[n, 2]$ means $\emptyset = A \cap B = A \cap C = B \cap C$. So by Addition Rule, $|A \cup B \cup C| = |A| + |B| + |C| = 6$. Hence $\mathbf{PG}[n, 2]$ contains a triangke if and only if $n \geq 6$.

7. We know that $PG[5, 2]$ (the Petersen Graph) is C_4 -free.

Now, assume that $n \geq 6$, Let $A \neq B$ two 2-sets such that $|A \cap B| = 1$. So $|A \cup B| = 3$. As $n \geq 6$, there exist $\binom{n-3}{2}$ $\binom{-3}{2} \geq 3$ common adjacent vertices to A and B. So $PG[n, 2]$ contains a quadrilateral.

□

Exercise 3. Let G be a finite group of cardinality n and identity element 1. Let *S* be a subset of *G* such that $1 \notin S$ and $S^{-1} = S$ (i.e. $s \in S \Longrightarrow s^{-1} \in S$).

We denote by $\text{Cay}(G : S)$ (Cayley graph) the simple graph with set of vertices G and adjacency relation defined by: x, y are adjacent if and only if $y = sx$, for some $s \in S$.

- (1) Show that $\text{Cay}(G : S)$ is $|S|$ -regular.
- (2) For $g \in G$, let

$$
\begin{array}{rccc}\varphi_g\colon&G&\longrightarrow&G\\x&\longmapsto&xg\end{array}
$$

Show that φ_q is an automorphism of $Cay(G : S)$. Show that $Cay(G : S)$ is vertex-transitive.

(3) Show that $Cay(G : S)$ is connected if and only if S generates G.

- (4) Show that if G is Abelian and $|S| \geq 3$, then Cay(G : S) contains a 4-cycle.
- (5) Show that the Petersen Graph is not a Cayley graph. (Recall that if G is a group of order 10, then either $G \simeq \mathbb{Z}_{10}$ or $G \simeq D_5$, where D_5 is the group generated by two elements r and s , with $r^5 = 1 = s^2$ (the order of r is 5 and the order of *s* is 2) and $srs = s^{-1}$).

Solution.

(1) Let v be a vertex of $\Gamma = \text{Cay}(G : S)$. Consider the function

$$
\begin{array}{rcl} \gamma & : & S & \longrightarrow & N(v) \\ & s & \longmapsto & sv \end{array}
$$

Clearly γ is a bijection. Hence $|S| = |N(v)| = d(v)$. Thus Γ is $|S|$ -regular. (2) It is clear that φ_g is a bijection. For $x, y \in G$, we have:

$$
xy \in E(\Gamma) \iff y = sx \text{ for some } s \in S
$$

\n
$$
\iff yg = sxy
$$

\n
$$
\iff yg = sxy
$$

\n
$$
\iff \varphi_g(y) = s\varphi_g(z)
$$

\n
$$
\iff \varphi_g(x)\varphi_g(y) \in E(\Gamma).
$$

It follows that φ_q is an automorphism of $Cay(G : S)$.

Let $x \neq y$. Then $y = \varphi_g(x)$, with $g = x^{-1}y$. Thus Γ is vertex transitive.

(3) Suppose that $\Gamma = \text{Cay}(G : S)$ is connected. Then for each $x \in G$, there is a path from 1 to x .

Let $p = (1, x_1, \ldots, x_k = x)$ be such a path. Then $x_1 = s_1.1$, for some $s_1 \in S, \ldots, x_k = s_k s_{k-1} \ldots s_1$, for some $s_1, s_2 \ldots, s_k \in S$. Thus S generates G.

Conversely, suppose that S generates G, then for every $x \in G$, $x =$ $s_1 s_2 ... s_k$ for some $s_1, s_2, ..., s_k$ ∈ $S \cup S^{-1} = S$. Hence

 $W_x = (1, s_k, s_{k-1}s_k, \ldots, x = s_1s_2 \ldots s_k)$

is a walk from 1 to x. Thus, for all $x \neq y$ in G, concatenating the walks W_x and W_y at the vertex 1, we obtain a walk from x to y, showing that the $graph \Gamma$ is connected.

(4) Assume *G* is an Abelian group and $|S| \geq 3$. Let $s \in S$, then there exists $t \in S$ such that $t \notin \{s, s^{-1}\}.$ So

is a 4-cycle of Γ .

- (5) Let PG be the Petersen graph. We know that PG satisfies the following properties.
	- It has $n = 10$ vertices.
	- It is 3-regular.
- It does not contain a 4-cycle.
- It contains a 5-cycle.
- It is vertex transitive.

We will show that it is not isomorphic to a Cayley graph.

Indeed, suppose that $\mathbf{PG} = \Gamma = \text{Cay}(G : S)$, for some group G and some Cayley set *S*. Then $|G| = 10$. According the above questions, the following properties hold:

 $-|S| = 3$ (as PG is 3-regular.

- G is not Abelian (as PG has no 4-cycle).

From Group Theory, the groups of order 10 are exactly $\mathbb{Z}/10\mathbb{Z}$ and the Dihedral group $\mathcal{D}_5 = \langle r, s \rangle$ such that $o(r) = 5$, $o(s) = 2$, and $srs = r^{-1}$. We deduce that $G = \mathcal{D}_5$.

The descriptive list of elements of \mathcal{D}_5 is

$$
\mathcal{D}_5 = \left\{ 1, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s \right\}.
$$

Note that the rotations r, r^2, r^3 and r^4 play the same role in \mathcal{D}_5 and the reflections s, rs, r^2s, r^3s, r^4s play, also, the same role; in the sense that if $r_1 \in \{r, r^2, r^3, r^4\}$ and $s_1 \in \{\overline{s}, rs, r^2s, r^3s, r^4s\}$, then $\mathcal{D}_5 =$.

We consider two cases.

Case 1: If *S* contains *r*, then $S = \{r, r^{-1}, s\}$. In this case

is a 4-cycle of PG, a contradiction.

Case 2: If *S* does not contain *r*. Then *S* is a subset of $\{s, rs, r^2s, r^3s, r^4s\}$ of cardinality 3.

As PG contains a 5-cycle, there exist $t_1, t_2, t_3, t_4, t_5 \in S$ such that

$$
t_1t_2t_3t_4t_5=1.
$$

As every $t_i^2 = 1$ for every *i*, we deduce that $t_1 = (t_2 t_3)(t_4 t_5)$.

Note that if *i* is a nonnegative integer, then as $srs = srs^{-1} = r^{-1}$, we deduce that $sr^is = (srs^{-1})^i = r^{-i}$. So if $t, t' \in S$, then $t = r^is$ and $t' = r^js$ for some nonnegative integers i, j , and

$$
tt' = ri srj s = ri (srj s) = ri r-j = ri-j.
$$

Thus

$$
t_1 = (t_2 t_3)(t_4 t_5) = r^k,
$$

for some nonnegative integer k, which is impossible, as t_1 is of order 2 and r^k is either 1 or of order 5.

As a result, PG is a vertex transitive graph that is not a Cayley graph.

□