KFUPM-DEPARTMENT OF MATHEMATICS-MATH 645-EXAM I-TERM 231

MATH 645: EXAM I, TERM (231), OCTOBER 11, 2023

EXAM I- MATH 645 Duration: 150 mn

Student Name:

ID:

(1) Explain why *G* is Eulerian.

(2) Decompose *G* into cycles.

(3) Find an Euler tour of *G* starting from vertex "Start".

Solution. **1**. It is clear that the degree of every vertex of *G* is even. So *G* is Eulerian.

2.A possible decomposition into cycle:

3. An Euler tour starting from the vertex Start:

$$S - D - B - C - G - D - C - F - G - H - D - E - H - I - E - S$$

Exercise 2. Let $n \ge 4$, and *S* be a set of cardinality *n*. We let $\mathbf{PG}[n, 2]$ be the simple graph with vertices the subsets of *S* of cardinality 2, and adjacency relation given by: *A*, *B* are adjacent if and only if $A \cap B = \emptyset$.

- (1) Show that $\mathbf{PG}[n, 2]$ is $\frac{(n-2)(n-3)}{2}$ -regular and has $\frac{n(n-1)}{2}$ vertices.
- (2) Evaluate the number of edges of PG[n, 2].
- (3) Show that if n = 4, then PG[n, 2] is isomorphic to $3K_2$ (three copies of K_2). IN ALL THE REMAINING QUESTIONS, WE WILL ASSUME THAT n > 5.
- (4) Show that $\mathbf{PG}[n, 2]$ is connected and d(u, v) = 2, for any two distinct nonadjacent vertices.
- (5) Show that $\mathbf{PG}[n, 2]$ is Eulerian if and only if either $n \equiv 2 \pmod{4}$ or $n \equiv 3$ (mod 4).
- (6) Show that PG[n, 2] contains a triangle if and only if $n \ge 6$.
- (7) Show that PG[n, 2] contains a quadrilateral (a 4-cycle) if and only if n > 6.

Solution.

1. Let *A* be a vertex of $\mathbf{PG}[n, 2]$. The neighborhood of *A* is given by:

 $\mathbf{N}(A) = \{B \subseteq [n] : A \cap B = \emptyset\} = \{B : B \subseteq [n] \setminus A \text{ and } |B| = 2\} = \mathcal{P}([n] \setminus A, 2),$

where $\mathcal{P}([n] \setminus A, 2)$ is the set of all subsets of $[n] \setminus A$ with size 2. So $d(A) = \binom{n-2}{2} =$ $\frac{(n-2)!}{(n-4)!2!} = \frac{(n-2)(n-3)}{2}.$

It follows that $\mathbf{PG}[n, 2]$ is $\frac{(n-2)(n-3)}{2}$ -regular. 2. The vertex set of $\mathbf{PG}[n, 2]$ is $\mathcal{P}([n], 2)$. By Euler's Sum of Degrees Theorem, we have

$$\sum_{A \in \mathcal{P}([n],2)} d(A) = 2m,$$

where *m* is the number of edges of
$$PG[n, 2]$$
.

Hence $|\mathcal{P}([n],2)| \times \frac{(n-2)(n-3)}{2} = 2m$, that is $\binom{n}{2} \times \frac{(n-2)(n-3)}{2} = 2m$, and consequently, $m = \frac{n(n-1)(n-2)(n-3)}{8}$.

3. For n = 4, the graph $\mathbf{PG}[4, 2]$ looks like:

which is, clearly, isomorphic to $3K_2$.

4. Let A, B be two distinct nonadjacent vertices. Then $|A \cap B| = 1$. So $|A \cup B| = 1$ 2+2-1=3. Consequently $|[n] \setminus (A \cup B)| \geq 2$. Taking any subset C of $[n] \setminus (A \cup B)$ of size 2, C is adjacent to both A and B. It follows that PG[n, 2] is connected and d(A, B) = 2, for all $A \neq B$, nonadjacent.

5. As $\mathbf{PG}[n, 2]$ is $\frac{(n-2)(n-3)}{2}$ -regular, it is Eulerian iff $\frac{(n-2)(n-3)}{2}$ is even, which is equivalent to 4 divides (n-2)(n-3). But as gcd(n-2, n-3) = 1, $\mathbf{PG}[n, 2]$ is

Eulerian iff either 4 divides n - 2 or 4 divides n - 3, which means $n \equiv 2 \pmod{4}$ or $n \equiv 3 \pmod{4}$.

6. A triangle (A, B, C) in $\mathbf{PG}[n, 2]$ means $\emptyset = A \cap B = A \cap C = B \cap C$. So by Addition Rule, $|A \cup B \cup C| = |A| + |B| + |C| = 6$. Hence $\mathbf{PG}[n, 2]$ contains a triangke if and only if $n \ge 6$.

7. We know that PG[5, 2] (the Petersen Graph) is C_4 -free.

Now, assume that $n \ge 6$, Let $A \ne B$ two 2-sets such that $|A \cap B| = 1$. So $|A \cup B| = 3$. As $n \ge 6$, there exist $\binom{n-3}{2} \ge 3$ common adjacent vertices to A and B. So PG[n, 2] contains a quadrilateral.

Exercise 3. Let *G* be a finite group of cardinality *n* and identity element 1. Let *S* be a subset of *G* such that $1 \notin S$ and $S^{-1} = S$ (i.e. $s \in S \Longrightarrow s^{-1} \in S$).

We denote by Cay(G : S) (Cayley graph) the simple graph with set of vertices G and adjacency relation defined by: x, y are adjacent if and only if y = sx, for some $s \in S$.

- (1) Show that Cay(G : S) is |S|-regular.
- (2) For $g \in G$, let

Show that φ_g is an automorphism of Cay(G:S).

Show that Cay(G : S) is vertex-transitive.

(3) Show that Cay(G : S) is connected if and only if S generates G.

- (4) Show that if *G* is Abelian and $|S| \ge 3$, then Cay(G : S) contains a 4-cycle.
- (5) Show that the Petersen Graph is not a Cayley graph. (Recall that if *G* is a group of order 10, then either $G \simeq \mathbb{Z}_{10}$ or $G \simeq D_5$, where D_5 is the group generated by two elements *r* and *s*, with $r^5 = 1 = s^2$ (the order of *r* is 5 and the order of *s* is 2) and $srs = s^{-1}$).

Solution.

(1) Let v be a vertex of $\Gamma = Cay(G : S)$. Consider the function

Clearly γ is a bijection. Hence |S| = |N(v)| = d(v). Thus Γ is |S|-regular. (2) It is clear that φ_q is a bijection. For $x, y \in G$, we have:

$$\begin{array}{ll} xy \in E(\Gamma) & \Longleftrightarrow & y = sx \text{ for some } s \in S \\ & \Longleftrightarrow & yg = sxg \\ & \Leftrightarrow & \varphi_g(y) = s\varphi_g(z) \\ & \Leftrightarrow & \varphi_g(x)\varphi_g(y) \in E(\Gamma). \end{array}$$

It follows that φ_q is an automorphism of Cay(G : S).

Let $x \neq y$. Then $y = \varphi_g(x)$, with $g = x^{-1}y$. Thus Γ is vertex transitive.

(3) Suppose that $\Gamma = Cay(G : S)$ is connected. Then for each $x \in G$, there is a path from 1 to x.

Let $p = (1, x_1, \ldots, x_k = x)$ be such a path. Then $x_1 = s_1.1$, for some $s_1 \in S, \ldots, x_k = s_k s_{k-1} \ldots s_1$, for some $s_1, s_2 \ldots, s_k \in S$. Thus *S* generates *G*.

Conversely, suppose that *S* generates *G*, then for every $x \in G$, $x = s_1s_2...s_k$ for some $s_1, s_2, ..., s_k \in S \cup S^{-1} = S$. Hence

 $W_x = (1, s_k, s_{k-1}s_k, \dots, x = s_1s_2\dots s_k)$

is a walk from 1 to x. Thus, for all $x \neq y$ in G, concatenating the walks W_x and W_y at the vertex 1, we obtain a walk from x to y, showing that the graph Γ is connected.

(4) Assume *G* is an Abelian group and $|S| \ge 3$. Let $s \in S$, then there exists $t \in S$ such that $t \notin \{s, s^{-1}\}$. So

is a 4-cycle of Γ .

- (5) Let PG be the Petersen graph. We know that PG satisfies the following properties.
 - It has n = 10 vertices.
 - It is 3-regular.

- It does not contain a 4-cycle.
- It contains a 5-cycle.
- It is vertex transitive.

We will show that it is not isomorphic to a Cayley graph.

Indeed, suppose that $\mathbf{PG} = \Gamma = \operatorname{Cay}(G : S)$, for some group G and some Cayley set S. Then |G| = 10. According the above questions, the following properties hold:

- |S| = 3 (as PG is 3-regular.

- G is not Abelian (as PG has no 4-cycle).

From Group Theory, the groups of order 10 are exactly $\mathbb{Z}/10\mathbb{Z}$ and the Dihedral group $\mathcal{D}_5 = \langle r, s \rangle$ such that o(r) = 5, o(s) = 2, and $srs = r^{-1}$. We deduce that $G = \mathcal{D}_5$.

The descriptive list of elements of D_5 is

$$\mathcal{D}_5 = \{1, r, r^2, r^3, r^4, s, rs, r^2s, r^3s, r^4s\}.$$

Note that the rotations r, r^2, r^3 and r^4 play the same role in \mathcal{D}_5 and the reflections s, rs, r^2s, r^3s, r^4s play, also, the same role; in the sense that if $r_1 \in \{r, r^2, r^3, r^4\}$ and $s_1 \in \{s, rs, r^2s, r^3s, r^4s\}$, then $\mathcal{D}_5 = \langle r_1, s_1 \rangle$.

We consider two cases.

Case 1: If *S* contains *r*, then $S = \{r, r^{-1}, s\}$. In this case

is a 4-cycle of **PG**, a contradiction.

Case 2: If *S* does not contain *r*. Then *S* is a subset of $\{s, rs, r^2s, r^3s, r^4s\}$ of cardinality 3.

As PG contains a 5-cycle, there exist $t_1, t_2, t_3, t_4, t_5 \in S$ such that

$$t_1 t_2 t_3 t_4 t_5 = 1.$$

As every $t_i^2 = 1$ for every *i*, we deduce that $t_1 = (t_2 t_3)(t_4 t_5)$.

Note that if *i* is a nonnegative integer, then as $srs = srs^{-1} = r^{-1}$, we deduce that $sr^is = (srs^{-1})^i = r^{-i}$. So if $t, t' \in S$, then $t = r^is$ and $t' = r^js$ for some nonnegative integers *i*, *j*, and

$$tt' = r^i sr^j s = r^i (sr^j s) = r^i r^{-j} = r^{i-j}.$$

Thus

$$t_1 = (t_2 t_3)(t_4 t_5) = r^k,$$

for some nonnegative integer k, which is impossible, as t_1 is of order 2 and r^k is either 1 or of order 5.

As a result, **PG** is a vertex transitive graph that is not a Cayley graph.