EXAM II- MATH 645
Duration: $\mathbf{1 2 0} \mathbf{~ m n}$

Student Name:

ID:

Exercise 1. Find the Prüfer code of the following labelled tree.

Solution. For a finite labeled tree T (on $[n]$, with $n \geq 3$), we denote by $T_{1}=T$, $L_{1}=\mathcal{L}\left(T_{1}\right)$ (the set of all leaves of $T_{1}, \ell_{1}=\min \left(L_{1}\right), s_{1}$ the neighbor of ℓ_{1} in T_{1}, and the word $C_{1}=s_{1}$ (over the alphabet $[n]$).

Recursively, for i from 1 to $n-3$, we define $T_{i+1}=T_{i}-\ell_{i}, L_{i+1}=\mathcal{L}\left(T_{i+1}\right)$, $\ell_{i+1}=\min \left(L_{i+1}\right), s_{i+1}$ the neighbor of ℓ_{i+1} in T_{i+1}, and the word $C_{i+1}=C_{i} s_{i+1}$ (as concatenation of words).

The Prüfer code of T is C_{n-2}.
For the given tree, we have the following table.

i	Elements of L_{i}	ℓ_{i}	s_{i}	C_{i}
1	$1,3,4,7,8,10,11$	1	2	2
2	$3,4,7,8,10,11$	3	2	22
3	$4,7,8,10,11$	4	2	222
4	$2,7,8,10,11$	2	5	2225
5	$7,8,10,11$	7	6	22256
6	$8,10,11$	8	6	222566
7	$6,10,11$	6	5	2225665
8	$5,10,11$	5	9	22256659
9	10,11	10	9	222566599

It follows that the Prüfer code of T is $C=222566599$.

Exercise 2. Consider the following labeled graph:

Graph G
(1) Use "Greedy Algorithm" to color G.
(2) Find $\chi(G)$.

Solution. The greedy algorithm of coloring the vertices of a graph G consists of the following steps.

Step 1: Choose an arbitrary "order labeling" of the vertices of $G: v_{1}, v_{2}, \ldots, v_{n}$.
Step 2: Define a function $f: V \longrightarrow \mathbb{N}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\}$ by setting $f\left(v_{1}\right)=1$, and recursively, for $i \geq 2$, if $W_{i}=N_{G}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$, then

$$
f\left(v_{i}\right)=\min \left(\mathbb{N} \backslash f\left(W_{i}\right)\right)
$$

As each vertex has at most $\Delta(G)$ earlier neighbours, the "greedy colouring" uses at most $\Delta(G)+1$ colors.

The following table illustrate Greedy algorithm for the given graph.

i	v_{i}	$W_{i}=N_{G}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$	$f\left(W_{i}\right)$	$f\left(v_{i}\right)$
1	v_{1}	\emptyset	\emptyset	$\mathbf{1}$
2	$v_{2}\left\{v_{1}\right\}$	$\{\mathbf{1}\}$	2	
3	$v_{3}\left\{v_{1}, v_{2}\right\}$	$\{\mathbf{1}, \mathbf{2}\}$	3	
4	$v_{4}\left\{v_{2}, v_{3}\right\}$	$\{\mathbf{2}, \mathbf{3}\}$	$\mathbf{1}$	
5	$v_{5}\left\{v_{3}, v_{4}\right\}$	$\{\mathbf{1}, \mathbf{3}\}$	2	

Hence the Greedy coloring uses 3 colors, and consequently $\chi(G) \leq 3$. As in addition G is not bipartite(it contains a 3-cycle) and not empty and not empty, we deduce that $\chi(G) \geq 3$. As a result, $\chi(G)=3$.

Exercise 3. Let T be a tree with at least 2 vertices and ℓ be the number of leaves of T.
(1) Show that $\ell=2+\sum_{\substack{v \in V(T) \\ d(v) \geq 2}}(d(v)-2)$. Deduce that T has at least 2 leaves.
(2) Show that if T is a path if and only if it has exactly 2 leaves.
(3) Show that if G is a connected simple graph with at least 2 vertices, then there exist two distinct vertices u, v of G such that $G-\{u, v\}$ is connected.

Solution. (1) As T is a tree, we have $|E(T)|=|V(T)|-1$. So, by the Fundamental Theorem of Graph Theory, we deduce that:

$$
\begin{aligned}
2 & =2|V(T)|-2|E(T)| \\
& =2|V(T)|-\sum_{v \in V(T)} d(v) \\
& =\sum_{v \in V(T)}(2-d(v)) \\
& =\sum_{\substack{v \in V(T) \\
d(v)=1}}(2-d(v))+\sum_{\substack{v \in V(T) \\
d(v) \geq 2}}(2-d(v)) \\
& =\sum_{\substack{v \in V(T) \\
d(v)=1}} 1+\sum_{\substack{v \in V(T) \\
d(v) \geq 2}}(2-d(v)) \\
& =\ell+\sum_{\substack{v \in V(T) \\
d(v) \geq 2}}(2-d(v)) .
\end{aligned}
$$

Therefore $\ell=2+\sum_{\substack{v \in V(T) \\ d(v) \geq 2}}(d(v)-2)$. Consequently, $\ell \geq 2$.
(2) Assume T is a path: $T=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Then $d\left(v_{1}\right)=d\left(v_{2}\right)=1$ and $d\left(v_{i}\right)=2$, otherwise. So v_{1} and v_{2} are the only leaves of T.

Now, suppose that T has exactly two leaves u and v, then according to Question 1., $0=\sum_{\substack{x \in V(T) \\ d(x) \geq 2}}(d(x)-2)$. Thus $d(x)=2$, for each $x \in V(T) \backslash$ $\{u, v\}$.

Let $P=\left(u=u_{0}, u_{1}, \ldots, u_{k}, v\right)$ be the unique path joining u and v. Suppose that there is a vertex w of T which is not in P. As T is connected, there exists a path $Q=\left(u=w_{0}, w_{1}, \ldots, w_{s}=w\right)$ (of course $w_{1}=u_{1}$, as $d(u)=1$) joining u and w. Let w_{i} be $w_{i-1} \in P$ the first vertex of Q not in P. Then $i \geq 2$, and $w_{i-1} \notin\{u, v\}$ (as u, v are leaves). So $d\left(w_{i-1}\right)=3$, as it is adjacent to two vertices in P and to w_{i} (not in P), a contradiction. It follows that all the vertices of T are in the path P, completing the task.
(3) Let G be a connected simple graph with at least 2 vertices and T be a spanning tree of G. Then T has at least 2 leaves u, v. So $T-\{u, v\}$ is a spanning tree of $G-\{u, v\}$. Therefore $G-\{u, v\}$ is connected.

Exercise 4. Let T be a tree with $n \geq 3$ vertices and

$$
\varphi:[n] \longrightarrow V(T)
$$

be a labeling. Let P.c $(T)=a_{1} \ldots a_{n-2}$ be the Prüfer code of T.
(1) Show that T is a path if and only if for all $i \neq j$ in $[n-2], a_{i} \neq a_{j}$.
(2) Show that T is a star if and only if $a_{1}=a_{2}=\ldots=a_{n-2}$.

Solution.

(1) Assume that T is a path, then it has exactly two leaves $u, v \in V(T)$, all the others vertices are of degree 2. So $\varphi^{-1}(u), \varphi^{-1}(v)$ do not appear in P.c (T) and for each $w \in V(T)-\{u, v\}, \varphi^{-1}(w)$ appears once in P.c (T). It follows that $a_{i} \neq a_{j}$, for $i \neq j$.

Conversely, suppose that $a_{i} \neq a_{j}$, for $i \neq j$. Thus $\left|[n] \backslash\left\{a_{1}, a_{n}, \ldots, a_{n-2}\right\}\right|=$ 2. Thus T has exactly 2 leaves, and consequently T is a path.
(2) Suppose that T is a star with n vertices ($T \sim K_{1, n-1}$). Then T has $n-1$ leaves and a vertex of degree $n-1$. Let $v_{1}, v_{2}, \ldots, v_{n-1}$ be the leaves of T and w be the vertex with degree $n-1$. So $\varphi^{-1}(w)$ appears $n-2 n-2$ times in P.c (T). Thus, letting $a=\varphi^{-1}(w)$, we have P.c $(T)=(a, a, \ldots, a)$.

Conversely, suppose that P.c $(T)=(a, a, \ldots, a)$. We let $w=\varphi(a)$, then $d(w)=n-2+1=n-1$.

For each $x \in V(T)-\{w\}, \varphi^{-1}(x)$ does not appear in P.c (T). We let $x_{1}, x_{2}, \ldots, x_{n-1}$ be the leaves of T. As a result, T looks like (for $n=9$):

$$
K_{1,8}
$$

We conclude that T is a star.

Exercise 5. Let G be a graph. Show that the following properties hold.
(1) $\chi(G)-1 \leq \chi(G-v) \leq \chi(G)$ for each vertex v in G.
(2) $\chi(G)-1 \leq \chi(G-e) \leq \chi(G)$ for each edge e in G
(3) If G contains only one odd cycle as a subgraph, then $\chi(G)=3$.
(4) If G is not bipartite and has a vertex which is contained in every odd cycle of G, then $\chi(G)=3$.

Solution.

1. As $G-v$ is a subgraph of G, we get $\chi(G-v) \leq \chi(G)$.

For the left inequality $\chi(G)-1 \leq \chi(G-v)$; that is $\chi(G) \leq \chi(G-v)+1$, we let
$k=\chi(G-v)$ and $f: V(G-v) \rightarrow\{1,2, \cdots, k\}$ be a k-colouring of $G-v$. Consider $f^{\prime}: V(G) \rightarrow\{1,2, \cdots, k, k+1\}$ the mapping defined by:

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(G-v) \\ k+1 & \text { if } x=v\end{cases}
$$

Clearly, f^{\prime} is a $(k+1)$-coloring of G. It follows that, $\chi(G) \leq k+1=\chi(G-v)+1$, as desired.
2. Since $G-e$ is a subgraph of G, we have $\chi(G-e) \leq \chi(G)$. To establish the inequality $\chi(G)-1 \leq \chi(G-e)$; equivalently, $\chi(G) \leq \chi(G-e)+1$, we let $k=$ $\chi(G-e)$ and f be a k-colouring of $G-e$, where $e=u v$. Define $f^{\prime}: V(G) \rightarrow$ $\{1,2, \cdots, k, k+1\}$ by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \neq v \\ k+1 & \text { if } x=v\end{cases}
$$

It is clear that f^{\prime} is a $(k+1)$-coloring of G. Therefore $\chi(G) \leq k+1=\chi(G-e)+1$, as desired.
3. Since G contains an odd cycle, it is neither empty nor bipartite. So $\chi(G) \geq 3$.

Let w be any vertex in the unique odd cycle of G. Then $G-w$ contains no odd cycle, and consequently it is a bipartite graph. This leads to $\chi(G-w) \leq 2$. Now, by Question 1., we have $\chi(G) \leq \chi(G-w)+1 \leq 3$. Therefore, $\chi(G)=3$.
4. As G is not bipartite, we deduce that $\chi(G) \geq 3$. Let v be a vertex in G which is contained in every odd cycle in G. Then $G-v$ does not contain an odd cycle. Therefore $G-v$ is bipartite and $\chi(G-v) \leq 2$. Again, using Question 1., we obtain $\chi(G) \leq \chi(G-v)+1 \leq 3$. Thus, $\chi(G)=3$.

