KFUPM-DEPARTMENT OF MATHEMATICS-MATH 645-EXAM II-TERM 231

MATH 645: EXAM I, TERM (231), NOVEMBER 01, 2023

EXAM II- MATH 645 Duration: 120 mn

Student Name:

ID:

Exercise 1. Find the Prüfer code of the following labelled tree.

Solution. For a finite labeled tree T (on [n], with $n \ge 3$), we denote by $T_1 = T$, $L_1 = \mathcal{L}(T_1)$ (the set of all leaves of T_1 , $\ell_1 = \min(L_1)$, s_1 the neighbor of ℓ_1 in T_1 , and the word $C_1 = s_1$ (over the alphabet [n]).

Recursively, for *i* from 1 to n - 3, we define $T_{i+1} = T_i - \ell_i$, $L_{i+1} = \mathcal{L}(T_{i+1})$, $\ell_{i+1} = \min(L_{i+1})$, s_{i+1} the neighbor of ℓ_{i+1} in T_{i+1} , and the word $C_{i+1} = C_i s_{i+1}$ (as concatenation of words).

The Prüfer code of *T* is C_{n-2} .

For the given tree, we have the following table.

i	Elements of L_i	ℓ_i	s_i	C_i
1	1, 3, 4, 7, 8, 10, 11	1	2	2
2	3, 4, 7, 8, 10, 11	3	2	22
3	4, 7, 8, 10, 11	4	2	222
4	2, 7, 8, 10, 11	2	5	2225
5	7, 8, 10, 11	7	6	22256
6	8, 10, 11	8	6	222566
7	6, 10, 11	6	5	2225665
8	5, 10, 11	5	9	22256659
9	10, 11	10	9	222566599

It follows that the Prüfer code of *T* is C = 222566599.

Exercise 2. Consider the following labeled graph:

Graph G

(1) Use "Greedy Algorithm" to color G.

(2) Find $\chi(G)$.

Solution. The greedy algorithm of coloring the vertices of a graph *G* consists of the following steps.

Step 1 : Choose an arbitrary "order labeling" of the vertices of $G: v_1, v_2, \ldots, v_n$.

Step 2 : Define a function $f : V \longrightarrow \mathbb{N} = \{1, 2, 3, ...\}$ by setting $f(v_1) = 1$, and recursively, for $i \ge 2$, if $W_i = N_G(v_i) \cap \{v_1, \ldots, v_{i-1}\}$, then

$$f(v_i) = \min\left(\mathbb{N} \setminus f(W_i)\right).$$

As each vertex has at most $\Delta(G)$ earlier neighbours, the "greedy colouring" uses at most $\Delta(G) + 1$ colors.

The following table illustrate Greedy algorithm for the given graph.

i	v_i	$W_i = N_G(v_i) \cap \{v_1, \dots, v_{i-1}\}$	$f(W_i)$	$f(v_i)$
1	v_1	Ø	Ø	1
2	v_2	$\{v_1\}$	$\{1\}$	2
3	v_3	$\{v_1, v_2\}$	$\{{f 1},{f 2}\}$	3
4	v_4	$\{v_2, v_3\}$	$\{{f 2},{f 3}\}$	1
5	v_5	$\{v_3, v_4\}$	$\{{f 1},{f 3}\}$	2

Hence the Greedy coloring uses 3 colors, and consequently $\chi(G) \leq 3$. As in addition *G* is not bipartite(it contains a 3-cycle) and not empty and not empty, we deduce that $\chi(G) \geq 3$. As a result, $\chi(G) = 3$.

Exercise 3. Let *T* be a tree with at least 2 vertices and ℓ be the number of leaves of *T*.

- (1) Show that $\ell = 2 + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (d(v) 2)$. Deduce that *T* has at least 2 leaves.
- (2) Show that if *T* is a path if and only if it has exactly 2 leaves.
- (3) Show that if *G* is a connected simple graph with at least 2 vertices, then there exist two distinct vertices u, v of *G* such that $G \{u, v\}$ is connected.

Solution. (1) As *T* is a tree, we have |E(T)| = |V(T)| - 1. So, by the Fundamental Theorem of Graph Theory, we deduce that:

$$2 = 2|V(T)| - 2|E(T)|$$

= $2|V(T)| - \sum_{v \in V(T)} d(v)$
= $\sum_{v \in V(T)} (2 - d(v))$
= $\sum_{v \in V(T)} (2 - d(v)) + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (2 - d(v)) + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (2 - d(v))$
= $\sum_{\substack{v \in V(T) \\ d(v) \ge 2}} 1 + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (2 - d(v))$
= $\ell + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (2 - d(v)).$

Therefore $\ell = 2 + \sum_{\substack{v \in V(T) \\ d(v) \ge 2}} (d(v) - 2)$. Consequently, $\ell \ge 2$.

(2) Assume *T* is a path: $T = (v_1, v_2, ..., v_n)$. Then $d(v_1) = d(v_2) = 1$ and $d(v_i) = 2$, otherwise. So v_1 and v_2 are the only leaves of *T*.

Now, suppose that *T* has exactly two leaves *u* and *v*, then according to Question 1., $0 = \sum_{\substack{x \in V(T) \\ d(x) \ge 2}} (d(x) - 2)$. Thus d(x) = 2, for each $x \in V(T) \setminus (x, y)$

 $\{u,v\}.$

Let $P = (u = u_0, u_1, \ldots, u_k, v)$ be the unique path joining u and v. Suppose that there is a vertex w of T which is not in P. As T is connected, there exists a path $Q = (u = w_0, w_1, \ldots, w_s = w)$ (of course $w_1 = u_1$, as d(u) = 1) joining u and w. Let w_i be $w_{i-1} \in P$ the first vertex of Q not in P. Then $i \ge 2$, and $w_{i-1} \notin \{u, v\}$ (as u, v are leaves). So $d(w_{i-1}) = 3$, as it is adjacent to two vertices in P and to w_i (not in P), a contradiction. It follows that all the vertices of T are in the path P, completing the task.

(3) Let *G* be a connected simple graph with at least 2 vertices and *T* be a spanning tree of *G*. Then *T* has at least 2 leaves u, v. So $T - \{u, v\}$ is a spanning tree of $G - \{u, v\}$. Therefore $G - \{u, v\}$ is connected.

Exercise 4. Let *T* be a tree with $n \ge 3$ vertices and

$$\varphi \colon [n] \longrightarrow V(T)$$

be a labeling. Let $P.c(T) = a_1 \dots a_{n-2}$ be the Prüfer code of T.

4

- (1) Show that *T* is a path if and only if for all $i \neq j$ in [n-2], $a_i \neq a_j$.
- (2) Show that *T* is a star if and only if $a_1 = a_2 = \ldots = a_{n-2}$.

Solution.

(1) Assume that *T* is a path, then it has exactly two leaves $u, v \in V(T)$, all the others vertices are of degree 2. So $\varphi^{-1}(u), \varphi^{-1}(v)$ do not appear in P.c(T) and for each $w \in V(T) - \{u, v\}, \varphi^{-1}(w)$ appears once in P.c(T). It follows that $a_i \neq a_j$, for $i \neq j$.

Conversely, suppose that $a_i \neq a_j$, for $i \neq j$. Thus $|[n] \setminus \{a_1, a_n, \dots, a_{n-2}\}| = 2$. Thus *T* has exactly 2 leaves, and consequently *T* is a path.

(2) Suppose that *T* is a star with *n* vertices $(T \sim K_{1,n-1})$. Then *T* has n-1 leaves and a vertex of degree n-1. Let $v_1, v_2, \ldots, v_{n-1}$ be the leaves of *T* and *w* be the vertex with degree n-1. So $\varphi^{-1}(w)$ appears n-2 n-2 times in P.c(*T*). Thus, letting $a = \varphi^{-1}(w)$, we have P.c(*T*) = (a, a, \ldots, a) .

Conversely, suppose that P.c(T) = (a, a, ..., a). We let $w = \varphi(a)$, then d(w) = n - 2 + 1 = n - 1.

For each $x \in V(T) - \{w\}$, $\varphi^{-1}(x)$ does not appear in P.c(*T*). We let $x_1, x_2, \ldots, x_{n-1}$ be the leaves of *T*. As a result, *T* looks like (for n = 9):

 $K_{1,8}$

We conclude that T is a star.

Exercise 5. Let *G* be a graph. Show that the following properties hold.

- (1) $\chi(G) 1 \le \chi(G v) \le \chi(G)$ for each vertex v in G.
- (2) $\chi(G) 1 \le \chi(G e) \le \chi(G)$ for each edge *e* in *G*
- (3) If *G* contains only one odd cycle as a subgraph, then $\chi(G) = 3$.
- (4) If *G* is not bipartite and has a vertex which is contained in every odd cycle of *G*, then $\chi(G) = 3$.

Solution.

1. As G - v is a subgraph of G, we get $\chi(G - v) \leq \chi(G)$. For the left inequality $\chi(G) - 1 \leq \chi(G - v)$; that is $\chi(G) \leq \chi(G - v) + 1$, we let $k = \chi(G-v)$ and $f: V(G-v) \rightarrow \{1, 2, \dots, k\}$ be a *k*-colouring of G-v. Consider $f': V(G) \rightarrow \{1, 2, \dots, k, k+1\}$ the mapping defined by:

$$f'(x) = \begin{cases} f(x) & \text{if } x \in V(G-v), \\ k+1 & \text{if } x = v. \end{cases}$$

Clearly, f' is a (k + 1)-coloring of G. It follows that, $\chi(G) \le k + 1 = \chi(G - v) + 1$, as desired.

2. Since G - e is a subgraph of G, we have $\chi(G - e) \leq \chi(G)$. To establish the inequality $\chi(G) - 1 \leq \chi(G - e)$; equivalently, $\chi(G) \leq \chi(G - e) + 1$, we let $k = \chi(G - e)$ and f be a k-colouring of G - e, where e = uv. Define $f' : V(G) \rightarrow \{1, 2, \dots, k, k + 1\}$ by

$$f'(x) = \begin{cases} f(x) & \text{if } x \neq v \\ k+1 & \text{if } x = v. \end{cases}$$

It is clear that f' is a (k + 1)-coloring of G. Therefore $\chi(G) \le k + 1 = \chi(G - e) + 1$, as desired.

3. Since *G* contains an odd cycle, it is neither empty nor bipartite. So $\chi(G) \ge 3$. Let *w* be any vertex in the unique odd cycle of *G*. Then G - w contains no odd cycle, and consequently it is a bipartite graph. This leads to $\chi(G - w) \le 2$. Now, by Question 1., we have $\chi(G) \le \chi(G - w) + 1 \le 3$. Therefore, $\chi(G) = 3$.

4. As *G* is not bipartite, we deduce that $\chi(G) \ge 3$. Let *v* be a vertex in *G* which is contained in every odd cycle in *G*. Then G - v does not contain an odd cycle. Therefore G - v is bipartite and $\chi(G - v) \le 2$. Again, using Question 1., we obtain $\chi(G) \le \chi(G - v) + 1 \le 3$. Thus, $\chi(G) = 3$.