KFUPM-DEPARTMENT OF MATHEMATICS-MATH 645-TERM 241

MATH 645: EXAM I, TERM 241

EXAM I- MATH 645: Combinatorics

(October 17, 2024; 12:30-14:30)

Student Name:

ID:

Exercise 1.1. For a poset (P, \leq) , we recall the following definitions:

- A *chain* of (P, \leq) is a subset of P in which every pair of elements is comparable.
- An *antichain* of (P, \leq) is a subset of P in which no two distinct elements are comparable.
- The length of a chain C in P, denoted $\ell(C)$, is defined as $\ell(C) = |C| 1$.
- The *height* of a poset P , denoted by $\text{ht}(P)$, is defined as

$$
ht(P) = \sup \{ \ell(C) : C \text{ is a chain in } P \}.
$$

We also denote

$$
\kappa(P) = \sup \{|C| : C \text{ is a chain in } P\}.
$$

- The *height* of an element $x \in P$, denoted by $\text{ht}(x)$, is the supremum of the lengths of all chains in P that have x as their greatest element.
- The *width* of a poset *P*, denoted by $\alpha(P)$, is given by

$$
\alpha(P) = \sup \{|A| : A \text{ is an antichain in } P\}.
$$

We denote by

- $\gamma(P)$ = min $(\lbrace n : \lbrace A_1, A_2, \ldots, A_n \rbrace)$ is a partition of P into antichains of P \rbrace)
- $\theta(P)$ = min $({n : \{C_1, C_2, \ldots, C_n\}}$ is a partition of P into chains of P})
- (1) Let S be a nonempty set of size n and $P = 2^S$ the power set of S. Find $ht(P).$
- (2) Show that for every poset (P, \leq) , we have $\kappa(P) \leq \gamma(P)$ and $\alpha(P) \leq \theta(P)$.
- (3) Show that for every poset (P, \leq) , $\kappa(P) = \gamma(P)$.
- (4) Show that for every poset (P, \leq) , $\alpha(P) = \theta(P)$.

Exercise 1.2. Recall that if A is a set of size k and B is a set of size n , then the number of surjective functions $f: A \rightarrow B$ is given by

$$
\sigma(k,n) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} i^k = \sum_{i=0}^{n} (-1)^i \binom{n}{i} (n-i)^k.
$$

The number of partitions of a set of size k into n blocks is called the Stirling number of the second kind, it is denoted by $S(k,n)$ (or $\{\frac{k}{n}\}$).

We denote by $\text{Surj}([k], [n])$ the set of all surjections from the set $[k]$ onto the set [n] and $\mathcal{S}([k], n)$ the set of all partitions of [k] into *n* blocks.

(1) We define $\Psi : \text{Surj}([k], [n]) \longrightarrow \mathcal{S}([k], n)$, by assigning to $f \in \text{Surj}([k], [n])$, the partition $\mathcal{P} = \{f^{-1}(\{1\}), \ldots, f^{-1}(\{n\})\} \in \mathcal{S}([k], n)$. Show that

$$
|\text{Surj}([k],[n])| = \sum_{\mathcal{P} \in \mathcal{S}([k],n)} |\Psi^{-1}(\{\mathcal{P}\})|.
$$

(2) Let $\mathcal{P} = \{A_1, \ldots, A_n\} \in \mathcal{S}([k], n)$. We define $\theta : [k] \longrightarrow [n]$ by assigning to each element of A_i the value *i*.

Show that the function

$$
\gamma: S_n \longrightarrow \Psi^{-1}(\{\mathcal{P}\})
$$

$$
\sigma \longmapsto \sigma \circ \theta
$$

is a bijection, and deduce that $|\Psi^{-1}(\{\mathcal{P}\})|=n!$.

(3) Conclude that

$$
|S(k,n)| = |\mathcal{S}([k],n)| = \frac{1}{n!} \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} i^k.
$$

Exercise 1.3. Find the number of integer solutions of the inequality

 $x_1 + x_2 + x_3 \leq 20,$

with $x_1 \geq 0, x_2 \geq 1$ and $x_3 \geq 2$.

Exercise 1.4. The set of all derangements of $[n] := \{1, \ldots, n\}$ is denoted by

 $\mathfrak{D}_n := \{ \sigma \in S_n : \sigma(i) \neq i \text{ for all } i \in [n] \},$

where S_n is the set of permutations of the set [n].

The cardinality of \mathfrak{D}_n , denoted by d_n (or $\ln n$, known as the "subfactorial" or the *n*-th rencontres number), satisfies $d_0 = 1$ and $d_1 = 0$.

Use the "Inclusion-Excusion Principle" to show the formula:

$$
d_n = n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}.
$$

Hint: For each $i \in [n]$, define

$$
A_i := \{ \sigma \in S_n \colon \sigma(i) = i \}.
$$

For any subset $Y \subseteq [n]$, show that the set

$$
\bigcap_{i \in Y} A_i = \{ \sigma \in S_n \colon \sigma(i) = i \text{ for all } i \in Y \}
$$

is equipotent to the set of permutations of $[n] \setminus Y$. Use Inclusion-Exclusion Principle to conclude.

Exercise 1.5.

(1) Let $n > k$ be positive integers. Show that

$$
\sum_{i=k}^{n} \binom{n}{i} \binom{i}{k} (-1)^{i-k} = 0.
$$

(2) Let (b_n) be a sequence of complex numbers. Show that

$$
a_n = \sum_{i=0}^n \binom{n}{i} b_i \text{ for all } n \Longleftrightarrow b_n = \sum_{i=0}^n \binom{n}{i} (-1)^{n-i} a_i \text{ for all } n.
$$

Solution.

Exercise 1.6. Let *n* be a positive integer. Evaluate the following sum:

$$
\sum_{p+q+r=n} {n \choose p,q,r} p 2^{p-1} 3^q 4^r.
$$

Solution. □

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$

Exercise 1.7. Let n be an integer greater than or equal to 2. Evaluate the sum:

$$
\sum_{k=0}^{n} (k^2 + k + 1) \binom{n}{k} 2^k.
$$