KFUPM-DEPARTMENT OF MATHEMATICS-MATH 645-TERM 241

MATH 645: EXAM II, TERM 241

EXAM I- MATH 645: Combinatorics

(December 01, 2024; 17:30-19:30)

Student Name:

ID:

Exercise 2.1. Solve the following homographic recurrence relations

(1)
$$x_{n+1} = \frac{x_n + 2}{2x_n + 1}$$
, with $x_0 \neq -\frac{1}{2}$
(2) $x_{n+1} = \frac{x_n - 3}{3x_n + 7}$, with $x_0 \neq -\frac{7}{3}$

Solution.

Exercise 2.2. Let $(a_n)_{n\geq 0}$ be the real sequence whose exponential generating function is

$$A(s) = \frac{e^{-s}}{1+s}.$$

(1) Show that (a_n) satisfies the recurrence relations:

$$a_{n+1} = -(n+1)a_n + (-1)^{n+1}$$
 and $a_{n+1} = n(a_{n-1} - a_n) + 2(-1)^{n+1}$

(2) Find an explicit formula of a_n .

Solution. The exponential generating function A(s) is defined as:

$$A(s) = \sum_{n=0}^{\infty} a_n \frac{s^n}{n!} = \frac{e^{-s}}{1+s}.$$

It follows that

$$A(s)(1+s) = e^{-s}.$$

Expanding A(s)(1+s), we have:

$$\sum_{n=0}^{\infty} a_n \frac{s^n}{n!} + \sum_{n=0}^{\infty} a_n \frac{s^{n+1}}{n!} = \sum_{n=0}^{\infty} \frac{(-s)^n}{n!}.$$

Reindexing the second summation, we get:

$$\sum_{n=0}^{\infty} a_n \frac{s^n}{n!} + \sum_{n=1}^{\infty} a_{n-1} \frac{s^n}{(n-1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n s^n}{n!}.$$

Combining terms:

$$a_0 + \sum_{n=1}^{\infty} (a_n + na_{n-1}) \frac{s^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n s^n}{n!}.$$

Equating coefficients of $\frac{s^n}{n!}$ for $n \ge 1$, it follows that:

$$a_n + na_{n-1} = (-1)^n$$
, for $n \ge 1$.

Rewriting, we obtain the recurrence relation:

$$a_n = -na_{n-1} + (-1)^n$$
, for $n \ge 1$.

Thus:

$$a_{n+1} = -(n+1)a_n + (-1)^{n+1}, \text{ for } n \ge 0.$$

Next, let us derive the recurrence relation $a_{n+1} = n(-a_n + a_{n-1}) = 2(-1)^{n+1}$. From the previously derived recurrence relation:

$$a_n = -na_{n-1} + (-1)^n.$$

Substituting this into the expression for a_{n+1} :

$$a_{n+1} = -(n+1)a_n + (-1)^{n+1}$$

= $-na_n - a_n + (-1)^{n+1}$
= $-na_n + na_{n-1} + (-1)^{n+1} + (-1)^{n+1}$
= $n(-a_n + a_{n-1}) + 2(-1)^{n+1}$.

To find an explicit formula of a_n , remak that $e^{-s} = \text{egf}((-1)^n)$ and $\frac{1}{1+s} = \text{egf}((-1)^n n!)$. It follows that a_n is the combinatorial product of $(-1)^n$ and $(-1)^n n!$. Therefore

$$a_n = \sum_{k=0}^n \binom{n}{k} (-1)^k k! (-1)^{n-k} = (-1)^n \left(\sum_{k=0}^n \binom{n}{k} (-1)^k k! \right).$$

Exercise 2.3. Let Δ_n be the $n \times n$ determinant:

$$\Delta_n = \begin{vmatrix} 5 & 2 & 0 & \cdots & 0 \\ 3 & 5 & 2 & \ddots & \vdots \\ 0 & 3 & 5 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 2 \\ 0 & \cdots & 0 & 3 & 5 \end{vmatrix}.$$

(1) Find a second-order recurrence relation satisfied by Δ_n .

(2) Find an explicit formula for Δ_n .

Solution. Expanding the determinant along the first column, we find:

$$\Delta_{n+2} = 5\Delta_{n+1} - 3 \begin{vmatrix} 2 & 0 & \cdots & 0 \\ 3 & 5 & 2 & \ddots & \vdots \\ 0 & 3 & 5 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 2 \\ 0 & \cdots & 0 & 3 & 5 \end{vmatrix}.$$

Expanding the second determinant along the first row, we obtain the following linear recurrence relation (LRR):

$$\Delta_{n+2} = 5\Delta_{n+1} - 6\Delta_n.$$

The characteristic equation of this LRR is:

$$r^2 - 5r + 6 = 0,$$

which has roots $r_1 = 2$ and $r_2 = 3$. Thus, the general solution is:

$$\Delta_n = c_1 2^n + c_2 3^n.$$

Using the initial conditions $\Delta_1 = 5$ and $\Delta_2 = 19$, we solve for c_1 and c_2 :

$$\Delta_1 = c_1 2^1 + c_2 3^1 = 2c_1 + 3c_2 = 5,$$

$$\Delta_2 = c_1 2^2 + c_2 3^2 = 4c_1 + 9c_2 = 19.$$

Solving this system of equations gives $c_1 = -2$ and $c_2 = 3$. Therefore, the explicit formula for Δ_n is:

$$\Delta_n = 3^{n+1} - 2^{n+1}.$$

Exercise 2.4. Let K be a field. Show the equality

$$\prod_{k=0}^{\infty} \left(1 + X^{2^k} \right) = \frac{1}{1-X} = 1 + X + X^2 + \cdots$$

/

in $\mathbf{K} \llbracket X \rrbracket$.

Solution.

$$\begin{split} \prod_{k=0}^{\infty} \left(1 + X^{2^k} \right) &= \prod_{k=0}^{\infty} \frac{\left(1 + X^{2^k} \right) \left(1 - X^{2^k} \right)}{1 - X^{2^k}} &= \prod_{k=0}^{\infty} \frac{1 - X^{2^{k+1}}}{1 - X^{2^k}} \\ &= \lim_{n \to \infty} \prod_{k=0}^n \frac{1 - X^{2^{k+1}}}{1 - X^{2^k}} &= \lim_{n \to \infty} \frac{1 - X^{2^{n+1}}}{1 - X} \\ &= \frac{1}{1 - X}. \end{split}$$

Exercise 2.5. Let $\mathbf{K} \llbracket X \rrbracket^{\circ}$ be the group $X \mathbf{K} \llbracket X \rrbracket \setminus X^2 \mathbf{K} \llbracket X \rrbracket$ with operation the composition of formal power series.

Find the reverse (the inverse in the group $(\mathbf{K} \llbracket X \rrbracket^{\circ}, \circ)$) of the formal power series

$$\alpha = X + X^2 + \cdots$$

Solution. Let $\alpha = X + X^2 + \cdots = \frac{X}{1 - X}$. Then $\alpha^{\underline{r}}$ is defined by the equation $X = \alpha(\alpha^{\underline{r}}) = \frac{\alpha^{\underline{r}}}{1 - \alpha^{\underline{r}}}$. It follows that

$$\alpha^{\underline{r}} = \frac{X}{1+X} = \sum_{n=1}^{\infty} (-1)^{n-1} X^n.$$

Exercise 2.6. Recall the following formal power series in $\mathbb{C} \llbracket X \rrbracket$:

$$\sin(X) \qquad := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} X^{2n+1}, \quad \cos(X) \qquad := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} X^{2n},$$
$$\tan(X) \qquad := \frac{\sin(X)}{\cos(X)}, \qquad \qquad \sinh(X) \qquad := \sum_{k=0}^{\infty} \frac{X^{2k+1}}{(2k+1)!},$$
$$\arccos(X) \qquad := \sum_{n=0}^{\infty} \frac{(2n)!}{(2^n n!)^2} \frac{X^{2n+1}}{2n+1}, \quad \arctan(X) \qquad := \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} X^{2k+1}.$$

- (1) Show that $\exp(iX) = \cos(X) + i\sin(X)$ where $i = \sqrt{-1} \in \mathbb{C}$ (Euler's Formula).
- (2) Show that $\sin(2X) = 2\sin(X)\cos(X)$ and $\cos(2X) = \cos^2(X) \sin^2(X)$ (Hint: Use the previous question and separate real from non-real coefficients).
- (3) Show that $\cos^2(X) + \sin^2(X) = 1$ (Pythagorean Identity).
- (3) Show that $\cos^2(X) + \sin^2(X) = 1$ (Pythagorean Identity). (4) Show that $\sinh(X) = \frac{1}{2}(\exp(X) \exp(-X))$ and $[\sin(X)]' = \cos(X)$ and $[\cos(X)]' = -\sin(X).$
- (5) Show that $\arctan \circ \tan = X$
- (6) Show that $\arctan(X) = \frac{i}{2} \log\left(\frac{i+X}{i-X}\right)$.

Solution.

 $(\mathbf{1})$

$$\exp(iX) = \sum_{\substack{n=0\\\infty}}^{\infty} \frac{1}{n!} (iX)^n$$

$$= \sum_{\substack{n=0\\\infty}}^{\infty} \frac{1}{(2n)!} (iX)^{2n} + \sum_{\substack{n=0\\\infty}}^{\infty} \frac{1}{(2n+1)!} (iX)^{2n+1}$$

$$= \sum_{\substack{n=0\\n=0}}^{\infty} \frac{(-1)^n}{(2n)!} X^{2n} + i \sum_{\substack{n=0\\\infty}}^{\infty} \frac{(-1)^n}{(2n+1)!} X^{2n+1}$$

$$= \cos(X) + i \sin(X)$$

(2) As $\exp(i(2X)) = \cos(2X) + i\sin(2X)$, and

$$\exp(iX + iX) = \exp(i(2X)) = (\exp(iX))^2 = (\cos(X) + i\sin(X))^2 = [(\cos(X))^2 - (\sin(X))^2] + i[2\sin(X)\cos(X)]$$

we deduce that $\sin(2X) = 2\sin(X)\cos(X)$ and $\cos(2X) = (\cos(X))^2 - (\sin(X))^2$. (3) As $\exp(iX)\exp(-iX) = exp(0) = 1$, we deduce that

$$1 = (\cos(X) + i\sin(X))(\cos(X) - i\sin(X)) = (\cos(X))^{2} + (\sin(X))^{2}.$$

- (4) Straightforward.
- (5) Let us first compute $(\arctan)'$ and $(\tan)'$:

$$(\arctan)' = \sum_{\substack{n=0\\\infty}}^{\infty} \frac{(-1)^n}{2n+1} (2n+1) X^{2n}$$
$$= \sum_{\substack{n=0\\n=0}}^{\infty} (-1)^n X^{2n}$$
$$= \sum_{\substack{n=0\\n=0}}^{\infty} (-X^2)^n = \frac{1}{1+X^2}$$

and

$$(\tan)' = \frac{\cos(X)\cos(X) - \sin(X)(-\sin(X))}{\cos^2(X)} = \frac{1}{\cos^2(X)}.$$

Now, by chain rule, we have:

$$(\arctan \circ \tan)' = (\arctan)'(\tan(X)).(\tan)'(X)$$

= $\frac{1}{1 + \tan^2(X)} \cdot \frac{1}{\cos^2(X)}$
= $\cos^2(X) \frac{1}{\cos^2(X)} = 1.$

Thus, as $(\arctan \circ \tan) \in \mathbb{C} \llbracket X \rrbracket^{\circ}$, we deduce that $\arctan \circ \tan = X$. This means that \arctan is the reverse of \tan .

(6) Recall that

$$\log(1+X) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} X^n \text{ and } \log(1-X) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (-1)^n X^n = -\sum_{n=1}^{\infty} \frac{1}{n} X^n.$$
As,

$$\frac{i}{2} \log\left(\frac{i+X}{i-X}\right) = \frac{i}{2} \log\left(\frac{1-iX}{1+iX}\right) = \frac{i}{2} \left[\log(1-iX) - \log(1+iX)\right],$$

we conclude that

$$\frac{i}{2}\log\left(\frac{i+X}{i-X}\right) = \frac{i}{2}\left(-\sum_{n=1}^{\infty}\frac{i^n}{n}X^n - \sum_{n=1}^{\infty}\frac{(-1)^{n-1}i^n}{n}X^n\right)$$
$$= \frac{i}{2}\left(\sum_{n=1}^{\infty}(-1 - (-1)^{n-1})\frac{i^n}{n}X^n\right)$$
$$= \frac{i}{2}\left(\sum_{n \text{ is odd}}(-1 - (-1)^{n-1})\frac{i^n}{n}X^n\right)$$
$$= (-i)\left(\sum_{k=0}^{\infty}\frac{i^{2k+1}}{2k+1}X^{2k+1}\right)$$
$$= (-i)\left(\sum_{k=0}^{\infty}i\frac{(-1)^{2k+1}}{2k+1}X^{2k+1}\right)$$
$$= \sum_{k=0}^{\infty}\frac{(-1)^{2k+1}}{2k+1}X^{2k+1} = \arctan(X).$$

	- 1
	- 1