King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Syllabus MATH 645 AY: 2024-2025 (T241) Dr. Othman Echi Office: 319-Building 5

Title: Combinatorics

Textbook: Sagan, Bruce E. Combinatorics: the art of counting. Graduate Studies in Mathematics 210. Providence, RI: American Mathematical Society (AMS), 2020.

Description: Basic Counting Principles. Arrangements and Derangements. Generating Functions. Exponential generating functions. Recurrence Relations. The Sieve Formula. The Möbius inversion formula in partially ordered sets. Group Actions: Burnside and Polya-Redfield Counting theorems.

Office Hours: Every Monday from 09:00 to 10:30 AM (or by appointment via e-mail)

Week	Topics
1, 2,3	Basic Counting: The sum and product rules for sets, permutations and words, combinations and subsets, set partitions, permutations by cycle structure, integer partitions, compositions, lattice paths, pattern avoidance.
4,5	Counting with Signs: The principle of inclusion-exclusion, sign- reversing involutions, the Reflection Principle.
6,7	Counting with Ordinary Generating Functions: The algebra of formal power series, the sum and product rules for ogfs, revisiting integer partitions, recurrence relations and generating functions, rational generating functions and linear recursions.
8,9	Counting with Exponential Generating Functions: Generating functions for Eulerian polynomials, labeled structures, the sum and product rules for egfs, the exponential formula.
10,11	Counting with Partially Ordered Sets: Partially ordered sets, chains, antichains, and operations on posets, lattices, the Möbius function of a poset, The Möbius inversion theorem, quotients of posets, computing the Möbius function, Binomial posets.
12,13	Counting with Group Actions: Groups acting on sets, Burnside's lemma, the cycle index, RedfieldPólya theorem.
14, 15	Counting with Symmetric Functions: The algebra of symmetric functions, , the Schur basis of Sym, differential posets, cyclic sieving redux.

Course Learning Outcomes

Code	CLOs	Teaching Strategies	Assessment Methods
1	Knowledge and Understanding		
1.1	Recall the fundamental principles of enumerative combinatorics, including counting principles, the pigeonhole principle, permutations, combinations, and binomial coefficients	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams
2	Skills		
2.1	Use generating functions to solve counting problems	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams
2.2	Apply the concepts of group actions, Burnside's Lemma, and Polya's Enumeration Theorem to count objects up to symmetry	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams
2.3	Derive and prove combinatorial identities using bijective proofs, algebraic methods, and various combinatorial techniques	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams
2.4	Use recurrence relations to model and address complex counting problems	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams
2.5	Employ advanced counting techniques, such as the inclusion-exclusion principle and Möbius inversion in partially ordered sets	Lecturing, reading, projects and assignments	Homework, project reports, presentations, exams

Schedule of Assessment Tasks for Students

Assessment Task*	Week Due	Proportion of Total Assessment Score
Homework	Weekly	10%
Exam1	Week 5	15%
Exam 2	Week 9	15%
Exam 3	Week 12	15%
Projects/Presentations	Week 14	10%
Final exam	Week 16	35%