King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 655: Applied & Computational Algebra Midterm Exam, Spring Semester 242 (120 minutes) Prof. Jawad Abuihlail

Remark: Solve 6 questions including Q8. Show full details.

Throughout, and unless otherwise explicitly mentioned, R is a commutative ring with $1_R \neq 0_R$. With $\Gamma(R)$ we denote the zero-divisor graph of Rand with $diam(\Gamma(R))$ (resp. $gr(\Gamma(R))$) its diameter (resp. girth).

Q1. (14 points) Show that

(a) $\Gamma(R)$ is finite if and only if R is finite or an integral domain.

(b) $\Gamma(R)$ is connected.

Q2. (14 points) Show that

(a) $gr(\Gamma(R)) \in \{3, 4, \infty\}.$

(b) Give examples of commutative rings R_1 , R_2 and R_3 , such that

 $gr(\Gamma(R_1)) = 3$, $gr(\Gamma(R_2)) = 4$ and $gr(\Gamma(R_3)) = \infty$.

Q3. (14 points) Show that

(a) Show that $diam(\Gamma(R)) \leq 3$.

(b) Give examples of commutative rings R_1 , R_2 , R_3 and R_4 , such that

 $diam(\Gamma(R_1)) = 0, \ diam(\Gamma(R_2)) = 1, \ diam(\Gamma(R_3)) = 2 \ and \ diam(\Gamma(R_3)) = 3.$

Q4. (14 points) Recall that the idealization of an *R*-module *M* into *R* is $R(+)M := R \times M$ with pointwise addition an multiplication given by

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_2).$$

Assume that $M := \mathbb{Z}_3$ is an *R*-module. Show that

(a) If $ann_R(\mathbb{Z}_3) \neq 0$, then $gr(\Gamma(R(+)\mathbb{Z}_3)) = 3$.

(b) If $ann_R(\mathbb{Z}_3) = 0$, then $gr(\Gamma(R(+)\mathbb{Z}_3)) = \infty$ (show that in this case $R \simeq \mathbb{Z}_3$ as rings).

Q5. (14 points) Let S be a commutative semiring and I a non-zero ideal of S. Define $\Gamma_I(S)$ to be the graph with vertices

 $Z_I(S) := \{ x \in S \setminus I \mid xy \in I \text{ for some } y \in S \setminus I \}$

and two distinct vertices x and y are adjacent iff $xy \in I$. Show that

(a) $\Gamma_I(S)$ is connected.

(b) $diam(\Gamma_I(S)) \leq 3.$

(**Hint:** If x, y are non-adjacent vertices, then consider the different cases for x^2, y^2 to be in I or $S \setminus I$).

Q6. (14 points) Show that

(a) $\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is complete, but $\Gamma((\mathbb{Z}_2 \times \mathbb{Z}_2)[x])$ is not complete.

(b) If $R \ncong \mathbb{Z}_2 \times \mathbb{Z}_2$, then

 $\Gamma(R)$ is complete $\iff \Gamma(R[x])$ is complete $\iff \Gamma(R[[x]])$ is complete.

(**Hint:** If $f(x) = \sum_{i=0}^{\infty} f_i x^i \in R[[x]]$ and for some nonnegative integer t, $f_t \notin Z(R)$, while $f_i \in N(R)$ for $0 \le i \le t - 1$, then $f(x) \notin Z(R[[x]])$).

Q7. (14 points) Let $V := \mathbb{R}^{(\mathbb{N})}$ and consider the non-commutative ring $R := End_{\mathbb{R}}(V)$ under point-wise addition and multiplication taken to be the composition of functions, so

 $Z(R) = \{ f \in R \mid f \circ g = 0 \text{ or } g \circ f = 0 \text{ for some } g \in R^* \}.$

Consider the non-empty directed graph $\overrightarrow{\Gamma}(R)$ in which the set of vertices is $Z(R)^*$ and for two distinct elements $f, g \in Z(R)^*$ there is an arrow $f \longrightarrow g$ iff $f \circ g = 0$. Show that

(a) $\overrightarrow{\Gamma}(R)$ is disconnected.

(b) $\overrightarrow{\Gamma}(R)$ contains an *infinite* complete subgraph.

Q8. (30 points) Prove or disprove:

(a) If Z(R) is an ideal, then Z(R) is prime.

(b) If R_1 and R_2 are commutative rings such that $\Gamma(R_1) \simeq \Gamma(R_2)$, then $R_1 \simeq R_2$.

(c) There is a commutative ring R with $\Gamma(R) \simeq P_4$.

GOOD LUCK