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Problem 1:
Consider a twice continuously differentiable function f : [—m, 7] — R such that

f(=m)=f(r) and f'(-m)= f(m) (1)

1.)a.)(8pts) Relying on the eigenvalue problem for the operator di;g subject to the boundary
conditions (1), find functions f, : [-m, 7] — R and real numbers A, such that

f(:l?) == Z Anfn(m)a Y € [_"T! ﬂ-]

b.)(4pts) Compute A, explicitly, for f(z) = cosz. Justify your answers clearly.

2.)(8pts) Find functions g, : [—m,m] — C and complex numbers C,, such that
o0
flz) = Z Cngn(z), Vz € [—m,7]

Solution:

1.) a.) W consider the eigenvalue problem y”+ Ay = 0, with y(—7) = y(7) & y'(—7) = ¢/(7).
The auxiliary equation is m? 4+ A = 0. Assume A = —a?, a > 0. Thus, m? — o? = 0, and
we deduce the solution y(z) = ¢; cosh(azx) + cosinh(az). The boundary conditions imply
that ¢; coshan — ¢psinhanr = ¢jcoshanm + cpsinhan and —c¢yasinham + caacoshar =
ciasinh am + e cosh amr, that is, ¢; = ¢ = 0. Now, assume that A = 0. This implies that
Yy = ¢12+¢y, and the boundary conditions imply that —¢;m+cy = ¢3m+co, that is, ¢; = 0, and
we get the constant solution yo(x) = 1. Lastly, we assume Assume A = o?, a > 0.. Thus,
m?+a? = 0, and we deduce the solution y(z) = ¢; cos(ax)+czsin(az). The boundary condi-
© tions imply that ¢; cosam — cpsinam = ¢; cosam + cosinan and —C1( Sin Qm + Cox COS T =
ciasinan + cpacosam, that is, sinar = 0 if ¢y # 0 and/or ¢; # 0. We then get the
solution y,(x) = cos(nz) and §,(z) = sin(nz), for n = 1,2. The functions {yo, y.} con-
sists of a complete orthogonal basis of the Hilbert space H = {¢ € C*([-m, 7]), ¢(-7) =
() and ¢'(—n) = ¢'(m)}. Thus,

)= ot Z A, cos(nz) + By sin(nz), = € [—m, 7. (2)

n=1
And, we have A, = L [T f(z)cos(nz)dz, and B, =L ["_f(z)sin(nz)dz.

b.) Wehave Ay = 3= | coszdz, A, =L [7 coszcos(nz)dz,and B, = L [" coszsin(nz)dz.
=[sinz|™ ]=0

We have cos z cos(nz) = %[cos(l +n)z + cos(n — 1)z|. This imply 4, =0, n# 1 & A, = 1.

We have cos z sin(nz) = 3[sin(1 +n)z + sin(n — 1)z]. This imply B, =0, n# 1 & B; =0.

2.) We notice that the functions {y, + iJ,(z)}, n = 0,1, £2, ..., consists of a complex

complete orthogonal basis of H, and we

fla)= > Cne™, z €[] (3)

i 4 e inE g
Finally, we have C, = %%Tdr: =4

—x

" j(x)ei"tdx.

—m



Problem 2:
1.)(10pts) Use separation of variables method to find the solution u = u(r,8,t) of the BVP

1 1.
Upp + —Up + _Quﬁﬂ = Uy,

T T
w(2,6,) = 0, (4)
(e, 0,8) =0, ulr,m,t) =D,

where r € (0,2], 8 € [0, 7] and t > 0.
2.) a.)(6pts)Find eigenvalues and eigenfunctions of the BVP

Y '+ =0, »(0)=0, y(1)+4'(1)=0.

b.)(4pts)Represent the Fl’.;t*woeigenvalues on the real line.

Solution:

1.) We look for a solution in the form u = RT®. Thus, R"T® + R'TO + RTO" =

RT'O, so that & + 1E 4+ 59 = T We uncoupled as follows L =) %i = —pu,

and & + 1 4 1, = -\ From the boundary conditions we deduce that R(2) = 0,

©(0) = 0 and ©(nw) = 0. So, we consider the 7" + AT = 0 and the problem problems
1 _ 2 o ol -

{2(0—; ie’ezﬂ-;}= 0 and ;(R;) :BR’ i o 0. We know that the problem in ©

2

has solutions ©,,(6) = sin(m#@) only for g = m*, m = 1,2,... Next, the equation for R

is the Bessel eigenvalue problem. Its solutions are R,(r) = Ju(VAr), where J,,(r) is the

Bessel functions of order m. We must have Jn,(2v/A) = 0. Let o, such that Jp,(ay,) = 0,
n = 1,2,.., so that 2V/\, = an, that is, A, = 1(a,)?. Finally, the equation for T' has the
solution T,, = e~** Thus, u(r,0,t) = }_0° _| Ao (VA1) sin(m@)e—2nt,

2.) We refer the reader to the solution of Problem 1. Assume A = —a?, a > 0. We have
y(x) = ¢ cosh{az) + ¢z sinh(az). The boundary conditions imply that ¢; = 0 and ¢; = 0
as acosha + sinha > 0. Now, assume that A = 0. Thus y(z) = ¢,z + ¢9, and the bound-
ary conditions imply that c; = 0, and also 2¢; = 0, that is ¢; = 0. Lastly, we assume
Assume )\ = a2, a > 0. Thus, y(z) = ¢; cos(ax) + cysin(az). The boundary conditions im-
ply that ¢; = 0 and and asina + cosa = 0 (if ¢ # 0). Notice that o = nm and § + nw are
not solutions of this equation. Thus, «,, satisfies tana, = —a,. DEigenvalues are A, = .‘J:f1
and the corresponding eigenvalues are y,(z) = sin(a,z), n = 1,2, ...,.
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Problem 3:
1.)(10pts) Knowing that y;(z) = Y o0, Zr = €® is one power series solution of the DE

n=0 n!

zy" +(1—z)y —y=0, (5)

use the formula ya(z) = y1(z) [y 2(z)e” I P@9 4z, where the DE is rewritten in the form
y'+P(x)y'+Q(x) = 0, to find a second power series solution y, of the DE (5) that is linearly
independent to ;.

2.)(10pts) Consider the BVP
' —u=z,
u(0) —v'(0) = e, (6)
w(l) —u/'(1) = 8.

Use the Fredholm alternative theorem to find conditions on « and S that guarantee the
existence of solution to the BVP.

Solution:

1.) First, we find P(z) = 1 — 1, [ P(z)dz = Inz — z, and then e~ /P& = € Thys,
yo(2) = (z) [e®<dr = yi(z) [ S-dx. Now, we substitute e® as power series, and
we find y(z) = 1(z) [ 1 oo, 2l dr = y(2) Fia+32, (=2")dx. Lastly, we notice

n! n!

that 3720, &2 — gy ﬂ,}l;‘;’, so that y»(z) = yi(z)[lnz — 300, [ Er);;ld:r]: and

n!

Yo(z) = e®[lna + Y o7 | %fﬁ—]

L]

- 2.) a.) Let the operator L = g'z + 1. We have
fol vLudz = fnl (vu” +uv)dz = [u’v—uv’][1)+f01 uLvdz. The the Fredholm alternative theorem
says that, the equation Lu = x has a solution if fol avdz = [u'v — wv']}, for all v that satisfies
the problem

' —-v=0,

v(0) —'(0) =0, (7)

p(l) —2'(1) = 0.

The general solution is this equation is v(x) = ¢,€* + cze™*. The boundary conditions imply
1

that ¢ = 0. Thus v(z) = ce®. Now, we require that / redsr = [u'e” — ue]} s
0 _V_/
e =e(u'(1)—u(1))—(uw'(0)—u(0))
=[(z—1)e=]3=1

that is, 1 = —ef + a.



Problem 4:

1.) a.)(3pts) Given that y;(z) = cos(2n Inz) and y,(z) = sin(27 In ) are two solutions of DE
£?y" + 2y’ + 4my = 0 on (3, 00). only check that the two solutions are linearly independent
[I am not asking you to solve this DE].

b.)(4pts) Represent the zeros of the two functions 7, and y, in the interval [e%,ez)

[[ am not asking to graph the functions y; and ys].

¢.)(3pts) Does the Sturm separation theorem satisfied?

2.) Using the Sturm comparison theorem and its Corollary, what can you say about the
distance between two consecutive zeros of solutions of the DE ¢ + (9 — %)y = 0, for
a.)(4pts) v < 0;

b.)(3pts) v = 0;

c.)(3pts) v > 0.

Solution:
) . ., | cos(2rlnz) sin(2rlnz) | _ o
1.)a.) The Wronskian of y; and yo is W = ‘_%ﬂ a2 ins) 2_;“ coalonlnag)| = = el
b.) The zeros of y satisfy cos(27 Inz,) = 0, that is, 2nInz, = J+nm, n =0,41,42, ..., and
then z, = e‘l'i"'%, so we have 1g = ei and By = e,
Similarly, the zeros of y, satisfy sin(2m InZ,) = 0, that is, 2rIn &, = n7, n = 0,1, £2, ...,
and then #, = eZ, so we have Zp = 1, & = e3 and I, = e~ 3. c.) Yes, between two
consecutive zeros of of one solution, there is exactly on zero of the other solution. Thus, the
Sturm separation theorem is satisfied. 52
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2.) Consider the equation
y' + (90— Fy=0 (8)

Let two consecutive zeros a and 3 of a solution y of (8).

a.) Now, let us consider the solution z(z) = sin 3(z — «) of the DE 2" 492 = 0. The zeros of
zaret =a+ 5, n=0,%1,£2,..,.8ince 9 — % > 9 and y(a) = jz(a) = 0, the comparison
theorem says that § € (a,a + §), that is,  —a < .

b.) Method 1:

A corollary of the comparison theorem says that if m < g(z) < M, then

—= < B —a < Z=. Here we can set ¢(z) = m = M = 9. It follows that § — o = 3.
Method 2:

We apply the comparison theorem of the same equation y” + 9y = 0 and 2" +92 = 0. A
9> 9, we get exactly like in part (b) that 3 — a < . Also, between a and 3 there is a zero
of z(z) = sin(3(z — @)), that is, o + %. This means that 8 —a > . In conclusion, it follows
that 8 —a = %.

c.) as 9 > 9 — %, the comparison theorem says that o + § € («, 8), since z(a) = 0. This
means that § —a > 7.




Problem 5:

Say if the DE is oscillatory or non-oscillatory. Justify your answer.
1.)(10pts) u” + u' =0 on (0,00), u # constant,.

:z(:r—{—l]
2.)(10pts) y" + gy’ + (52 +¥*)y = 0 on (0, 00). You can consider writing the differential
equation satisfied by the function v = yvx + 1.

Solution:

1.) this equation is not in the form y” + g(z)y = 0, and we cannot apply the oscillation
theorem to it. We instead solve it to see if we can find a non-oscillatory solution, in this

equation the equation is non-oscillatory.
Let set w = u'. We reduce the DE into a first order DE v’ 4+ ——— :r(m+1) = 0, that is,

J"%w = —fmdi’ = f((:c_-l-ﬁ“ E)dl’ and lIll’LU| = ln[x1'1| -+ c, and w(:r) = :c+1 We
then deduce that u(z) = ¢ [ ZHde = ¢ [(1 + 1)dz = c(z + Inz) + c;. We just found two
non-oscillatory solutions u(z) = 1 and u(z) = ¢ + Inz, this equation is non-oscillatory.

2. Lety:(:r+1) 2. So, y 1)‘§t,r+(sr:—|— 1)~2¢/ and
y' = 3(z 4+ 1) iv — (¢4 1)"3u + (m +1)"20". We substitute into the DE to find after
simplification

%(m+1)“zv+v“— -;—(:1:+1)‘2v+( - (z +1)""w?)v =0,

472
that is i i
' " B 1 T e 1 2 ey
v (4:52 % 4(x + 1) +£.$..:|-..V)._U/)v
=q(z)

W@ can see that lim,, 1 g(z) = % 25 % From an oscillation theorem, the equation for v is
oscillatory, and so for the equation in y as both equations are equivalent on (0, o).



