King Fahd University of Petroleum and Minerals Department of Mathematics SYLLABUS Semester I: 2022-2023(222)

Instructor: Dr. A. Bonfoh

Course: MATH 665: Advanced Ordinary Differential Equations II

Objectives: This course reinforces students ability to understand, solve and deal with linear and nonlinear ordinary differential equations. The course extends the knowledge acquired in Math565 to the notions of bifurcation, self-adjoint and non self-adjoint Sturm Liouville BVPs, and also oscillation and comparison theorems.

Course Description: Self-adjoint boundary-value problems, Sturm-Liouville theory. Oscillation and comparison theorems. Asymptotic behavior of solutions. Singular Sturm-Liouville problems and non self-adjoint problems. Hypergeometric functions and related special functions. Bifurcation phenomena.

- Prerequisite: MATH565.
- **Credit:** 3 credit hours
- References: 1.The qualitative theory of ordinary differitial equations: an introduction. By F. Brauer and J. A. Nohel, Dover Publications, Inc. NY (1969).
 2.Nonlinear Differential Equations and Dynamical Systems by F. Verhulst

(Second Edition, 1996. Revised 2006)

3. Russell L. Herman. A Second Course in Ordinary. Differential Equations: Dynamical Systems and. Boundary Value Problems. Monograph, 2008.

Week	Topics	
1-12	Invariant sets and stability	
	Center manifolds and stability	
	Bifurcation Theory	
	Self-adjoint operators and examples	
	The case of Sturm-Liouville operator	
	The regular self-adjoint Sturm-Liouville	
	eigenvalue BVPs	
	Special functions	
	Green's functions	
	The singular non self-adjoint Sturm-Liouville	
	eigenvalue BVPs	
	Oscillations and Comparison theorems	
	The Fredholm Alternative Theorem	
13-15	Presentations of mini research projects	

Grading:	Midterm Exam	35%
	Homework assignments	20%
	Presentation	10%
	Final Exam	35%