
MATH680 — Dynamic Programming
Final Exam

Department of Mathematics
KFUPM

Duration: 2h30

Instructions

Answer all five problems.
Show all reasoning;
numerical precision to 2–3 decimals is sufficient.
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Problem 1 — 5G Network Slicing Admission & Pricing

MDP (20 Points)

We consider a finite-horizon MDP with capacity C = 2, states x ∈ {0, 1, 2}, survival proba-
bility s = 0.5, and horizon T = 2 (stages k = 0, 1; J2 ≡ 0).

Arrival scenarios:

A ∈ {1, 2}, P (A = 1) = 0.6, P (A = 2) = 0.4.

Decision at each k: choose price p ∈ {1, 3} and admission u ∈ {0, 1}. Reward:

r(x, p, u;A) = p ·min(A, C − x)u.

State transition (expectation approximation):

x′ = min
(
sx+ umin(A,C − x), C

)
.

Discount factor: γ = 0.9.

1. Write explicitly the Bellman equations for J1(x) and J0(x).

2. Compute numerical values of J1(0), J1(1), J1(2).

3. Determine, for each x ∈ {0, 1, 2}, the optimal pair (p∗, u∗) at stage k = 0.

4. Explain qualitatively how replacing the high price p = 2 of the classroom example by
p = 3 shifts the pricing threshold.
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Problem 2 — Multi-Product Inventory DP with Capac-

ity Constraint (20 Points)

We revisit the two-product inventory DP over periods k = 0, 1 (terminal time k = 2) with
initial state

X0 = (x1
0, x

2
0) = (1, 0).

Demands:

w1
k ∈ {0, 1}, P (0) = 0.3, P (1) = 0.7,

w2
k ∈ {0, 1, 2}, P (0) = 0.2, P (1) = 0.5, P (2) = 0.3.

Ordering costs: c1 = 1, c2 = 2. Holding costs: h1 = h2 = 1.

Capacity constraint:

x1
k + x2

k + u1
k + u2

k − w1
k − w2

k ≤ C = 3 for each period k.

Equivalently, after demand realization,

xi
k+1 = max(0, xi

k + ui
k − wi

k), i = 1, 2.

Terminal cost:
J2(x

1, x2) = (x1
2)

2 + (x2
2)

2.

1. Write the Bellman equation for J1(x) with the corrected capacity constraint and full
expectation over (w1, w2).

2. For state x1 = (1, 1), compute the optimal order vector (u1
1, u

2
1).

3. Compute J0(1, 0) by enumerating all feasible (u1
0, u

2
0) satisfying the capacity constraints.

4. Briefly explain how the constraint x1
k + x2

k + u1
k + u2

k − w1
k − w2

k ≤ 3 creates coupling
between the two products and affects optimal ordering.
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Problem 3 — Dynamic Programming for FX Trading

and Hedging (20 Points)

We consider a two-period speculative trading problem on a single foreign currency (EUR),
priced in USD.

Initial position:
C0 = 100, P0 = 0, S0 = 1.00.

Two equiprobable scenarios for the FX rate:

Scenario A: (S1, S2) = (0.95, 0.90), Scenario B: (S1, S2) = (1.05, 1.20).

At each time t = 0, 1 we choose a trade quantity xt (in EUR units):

• xt > 0: buy xt EUR at price St,

• xt < 0: sell |xt| EUR at price St.

Resource / feasibility constraints:

• No short-selling in EUR:

Pt + xt ≥ 0 =⇒ xt ≥ −Pt.

• No borrowing in cash (USD):

Ct − xtSt ≥ 0 =⇒ xt ≤
Ct

St

.

So the feasible set at time t is the interval

xt ∈
[
−Pt,

Ct

St

]
.

State dynamics:
Pt+1 = Pt + xt, Ct+1 = Ct − xtSt.

At t = 2, all remaining inventory is liquidated:

W2 = C2 + P2S2.

No transaction costs, no spread, and discount factor β = 1.

1. Write the Bellman equations for Q1(P1, C1) and for Q0 (as functions of x0).

2. At t = 1, and for a given feasible state (P1, C1) in each scenario separately, derive
the optimal action (buy as much as possible, sell as much as possible, or hold) using
monotonicity of W2 in x1.

3. Determine the optimal initial purchase x0 at t = 0.

4. Explain how the asymmetry between scenarios A (down-down) and B (up-up) alters
the structure relative to the classroom example.
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Problem 4 — TSP-MTW-RC with Dynamic Customer

Insertion (20 Points)

We start with the depot (0) and three customers {1, 2, 3}. Travel times equal Euclidean
distances:

d01 = 14.4, d12 = 9.9, d23 = 10.2, d03 = 12.5, d13 = 11.7, d02 = 15.8.

Each customer i has a single time window [Li, Ui]:

Depot: [540, 1080],

1 : [580, 640],

2 : [600, 660],

3 : [620, 700].

Service times: si = 5. Resource consumption γij is given as in tables in class (you may
assume values consistent with the project, or symbolic γij if preferred). Resource capacity:
Rmax = 12. The vehicle departs the depot at time t′0 = 560.

The initial static DP solution determines an optimal order to visit {1, 2, 3}. After the vehicle
has started executing the route (i.e., after reaching customer 1), a new request arrives from
customer 4 with:

di4 and d4j known, time window [L4, U4], service time s4 = 5.

You must determine whether inserting customer 4 is feasible, and if so, the best insertion
point.

1. Write the DP recurrence
f(S, j, t′j, rj)

for this problem (specialized to |S| ≤ 4).

2. Compute feasibility (arrival times, waiting times, remaining resources) of the initial
route visiting {1, 2, 3}.

3. Customer 4 arrives dynamically while the vehicle is at customer 1. Check all insertion
positions:

1 → 4 → 2 → 3, 1 → 2 → 4 → 3, 1 → 2 → 3 → 4,

and determine which are feasible.

4. Among feasible insertions, compute the incremental cost

∆C = (travel + waiting + service)new − (travel + waiting + service)old,

and identify the best insertion point.
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Problem 5 — Smart Grid Pricing MDP (Single Class,

Three States) (20 Points)

Single load class with capacity states b ∈ {0, 1, 2}.
Demand:

dt ∼ Poisson(Λ(u)), Λ(u) = 3e−u ln 2.

Maximum served:
Xt = min(dt, bt).

Net price (linear energy cost):

ũ = u− 0.2, u ∈ {1, 2}.

Transition:
bt+1 = bt −Xt,

(no returning capacity). Discount factor: γ = 0.9. Horizon: T = 2 with V2 ≡ 0.

1. Compute E[X | b = 1, u] and E[X | b = 2, u] for u = 1, 2.

2. Write the Bellman equations for V1(b) and V0(b).

3. Compute the optimal policy at t = 1 for all b.

4. Compute V0(2) and determine the optimal u∗
0.

5. Explain why large-capacity states sometimes prefer a higher price and sometimes prefer
a lower price, depending on elasticity.

.
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