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1. Task Scheduling (10 points)

You manage a single machine and must schedule a set of tasks J = {1, 2, 3, 4}. Each task j has a

processing time pj . There are sequence-dependent setup costs si→j incurred when task j is performed

immediately after task i. Use a dummy start task 0 with p0 = 0 and setup s0→j to model the first-task

setup. The goal is to minimize ∑
j∈J

C2
j +

∑
(i→j) adjacent in the sequence

si→j ,

where Cj is the completion time of task j.

Processing times:

(p1, p2, p3, p4) = (4, 2, 3, 4).

Precedence constraints:

1 → 4, 2 → 3.

Sequence-dependent setup costs si→j for i ∈ {0, 1, . . . , 4}, j ∈ {1, . . . , 4} (dash “–” means not applicable):

si→j 1 2 3 4

0 4 3 3 2

1 − 2 4 3

2 3 − 5 4

3 2 5 − 6

4 4 4 7 −

1. Formulate a subset Dynamic programming approach to solve this problem.

2. Recover the optimal schedule using the DP algorithm.

3. Provide:

(a) The optimal job sequence satisfying the precedences;

(b) The minimal value of
∑

C2
j +

∑
si→j ;

(c) A breakdown of the total setup cost and the sum of completion times.
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2. Optimal Control Problem (Discrete-Time, Finite Horizon) (10 points)

Consider the scalar, discrete-time linear system

xk+1 = a xk + b uk, a = 0.8, b = 1.0,

for stages k = 0, 1, . . . , N − 1 with horizon N = 3 and initial condition

x0 = 1.

For the given weights

q = 1, r = 0.2, PN = p = 3,

the performance index is

J(x0:N , u0:N−1) = x2
N p +

N−1∑
k=0

(
q x2

k + r u2
k

)
.

The control sequence is u0, u1, . . . , uN−1, and the resulting state sequence is x1, . . . , xN .

1. Define the value function Jk(x) (the minimal future cost from stage k with state x) and write the

Bellman recursion

Jk(x) = min
u

{
q x2 + r u2 + Jk+1(ax+ bu)

}
, JN (x) = p x2.

2. Compute (numerically) the optimal feedback control u∗
k(x) by backward induction and report

J0(x0). Solve numerically: discretize the state and use u∗
k = −Kkxk.

3. Plot the closed-loop trajectory xk under u∗
k for k = 0, . . . , N starting from x0 = 1.
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3. Pontryagin Minimum Principle (10 points)

Consider the dynamic system:

ẋ(t) = −αx(t) + u(t), α > 0,

over a fixed horizon t ∈ [0, T ].

The initial state is fixed,

x(0) = x0,

and the terminal state x(T ) is free.

We would like to minimize the quadratic effort and terminal deviation:

J =
1

2
qf x(T )

2 +
1

2

∫ T

0

(
q x(t)2 + r u(t)2

)
dt.

Take α = 0.2, q = 0.5, r = 0.25, qf = 2, T = 3, , and x0 = 1.

1. Formulate the Hamiltonian H
(
x, λ, u

)
.

2. Derive the costate dynamics λ(t) and boundary condition.

3. Find the expression of the minimizing control u∗(t) ∈ argmin
u

.
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4. Dynamic Portfolio Analysis (10 points)

An investor with initial wealth W0 > 0 allocates fractions (w,wf ) across one risky asset and one

riskless asset, with the budget

w + wf = 1.

Let Rf > 0 be the (gross) return of the riskless asset. The risky asset has a two-state (up/down) gross

return:

R =

RU with probability p,

RD with probability 1− p,

Assume the two assets’ returns are independent.

The terminal wealth at t = 1 is

W1 = W0

(
wR+ wfRf

)
.

The investor has a logarithmic utility and chooses (w,wf ) to

max
w,wf

E
[
lnW1

]
s.t. w + wf = 1, and (optionally) w,wf ≥ 0.

1. Write E[lnW1].

2. Derive the First-order conditions.

3. For the numerical values below:

p = 0.52, Rf = 1.03, RU = 1.13, RD = 0.93.

(i) Compute the state probabilities and W1 in each state as functions of w.

(ii) Maximize E[lnW1] numerically over w with wf = 1 − w. Report the optimal weights and the

value of E[lnW1].

4. Discuss how the optimal weights change as you vary p, or Rf . Explain the effect of increasing Rf

on wf and the trade-off between the two assets when p moves up or down. In particular, for which

values of p, the risky asset would always be overlooked?
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