Instructor: Course #: Title:	King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics SYLLABUS Semester I: 2021-2022(211) Dr. A. Bonfoh MATH 695 Reading and Research I Infinite-dimensional Dynamical Systems		
Objectives:	This course is designed to prepare students to take up research in the area of infinite-dimensional dynamical systems with applications to nonlinear PDEs.		
Course Description:	The course will cover existence and uniqueness of solutions, Semigroups, limits sets, existence of the global attractor. As typical examples, attractors for reaction-diffusion equations, Navier-Stokes equations, the Cahn-Hilliard equation and the phase-field system will be studied.		
Credit:	3 credit hours		
Textbook:	J.C. Robinson, <i>Infinite-dimensional Dynamical systems</i> , Cambridge University Press, Cambridge, 2001		
Papers to read :	 1.Large time behavior of a conserved phase-field system, by A. Bonfoh and C. Enyi (2016). 2.On Cahn-Hilliard-Gurtin equations, by A. Bonfoh and A.Miranville (2001). 3.Global Attractors of Sixth Order PDEs Describing the Faceting of Growing Surfaces, by M. Korzec et al. (2016). 		

Wee	Date	Sec.	Topics	Suggested Homework
k				Problems
1			Some nonlinear analysis tools	
2			Nonlinear Reaction-Diffusion	
		8.1	Equation (NRDE)	
		8.2	The Basis for the Galerkin Expansion	
		8.3	Weak solutions of the NRDE	
		8.4	Strong solutions of the NRDE	
3-4		9.1	The Stokes operator	
		9.2	The weak form of the Navier Stokes	
			equation	
		9.3	Properties of the Trilinear form	
		9.4	Existence of weak solutions	
		9.5	Unique solution in 2d	
		9.6	Existence of strong solutions in 2d	
5-6		10.1	Semigroups	
		10.2	Dissipation	
		10.3	Limits sets and attractors	
		10.4	A theorem for the existence of global	
			attractors	
		10.5	An example- The Lorenz attractor	
		10.6	Structure of the attractor	
7-8		11.1	Reaction-Diffusion Equation- Absorbing	
			sets and the attractor	

	11.2	Regularity results	
	11.4	A Lyapunov functional	
	11.5	The Chaffee-Infante equation	
9-10	12.	1 Attractors for 2d Navier-Stokes	
		equation	
11-		Reading of the above-mentioned papers	
15		(with a focus on the Cahn-Hilliard	
		equation and phase-field systems)	

Overlap with regular courses: less than 5%

Grading:

Midterm	30%
Homework assignments	30%
Presentation	10%
Final Exam	30%