PHD COMPREHENSIVE EXAM

Duration: 180 minutes

ID:	
NAME:	

•	Justify your answers thoroughly. For any
	theorem that you wish to cite, you should
	give its name and its statement.

Problem	Score
1	
2	
3	
4	
5	
7	
6	
8	
Total	/100

Show that a set *E* is measurable if and only if for every $\varepsilon > 0$, there exists a closed set *F* and open set \mathcal{O} for which $F \subseteq E \subseteq \mathcal{O}$ and $m^*(\mathcal{O} \sim F) \leq \varepsilon$.

Solution: Suppose *E* is a measurable set and let $\varepsilon > 0$. There exists an open set \mathcal{O} containing *E* and a closed set *F* contained in *E* for which $m^*(\mathcal{O} \sim E) < \varepsilon/2$ and $m^*(E \sim F) < \varepsilon/2$. By the measurability of *E*, we have

$$m^*(\mathcal{O} \sim F) = m^*(\mathcal{O} \cap F^C \cap E) + m^*(\mathcal{O} \cap F^C \cap E^C)$$

= $m^*(E \sim F) + m^*(\mathcal{O} \sim E)$
< ε .

Now fix $\varepsilon > 0$ and suppose that there is a closed set *F* and an open set *O* for which $F \subseteq E \subseteq O$ and $m^*(O \sim F) \leq \varepsilon$. Then

$$m^*(\mathcal{O} \sim E) \leq m^*(\mathcal{O} \sim F) < \varepsilon.$$

Since such sets can be found for all ε , *E* is measurable.

Assume that *E* is a set of finite measure. Let $\{f_n\}$ be a sequence of measurable functions on *E* that converges pointwise on *E* a.e. to a real-valued function *f* that is finite a.e. Show that the conclusion of Egoroff's Theorem still holds.

Solution: Assume *E* has finite measure and suppose $\{f_n\}$ is a sequence of measurable functions on *E* that converges pointwise a.e. to a function *f* that is finite a.e. Define

$$E_0 = \left\{ x \in E : \lim_{n \to \infty} f_n(x) = f(x) \right\}$$

and $E_1 = \{x \in E : f(x) \text{ is finite}\}$. By assumption, $m(E \sim E_0) = m(E \sim E_1) = 0$.

Let $\tilde{E} = E_0 \cap E_1$ and observe that

$$0 \le m(E \sim \tilde{E}) \le m(E \sim E_1) + m(E \sim E_0) = 0.$$

Hence $m(E \sim \tilde{E}) = 0$.

Let $\varepsilon > 0$. By Egoroff's Theorem, there is a closed set *F* contained in \tilde{E} for which

 $\{f_n\} \to f$ uniformly on *F* and $m(\tilde{E} \sim F) < \varepsilon$.

But then *F* is also a closed set contained in *E* that satisfies

$$m(E \sim F) \le m(\tilde{E} \sim F) + m(E \sim \tilde{E} \sim F)$$

$$< \varepsilon + m(E \sim \tilde{E}) = \varepsilon.$$

Term 232

Problem 3

Consider two Lebesgue integrable functions f and g over \mathbb{R} and two sequences of Lebesgue integrable functions $\{f_n\}$ and $\{g_n\}$ over \mathbb{R} . Assume that

- (i) $\{f_n\}$ converges to f pointwise a.e. on \mathbb{R} ,
- (ii) $\{g_n\}$ converges to *g* pointwise a.e. on \mathbb{R} ,
- (iii) $|f_n| \leq g_n$ a.e. on \mathbb{R} and
- (iv) $\int_{\mathbb{R}} g_n$ converges to $\int_{\mathbb{R}} g$.

Show that

$$\lim_{n\to\infty}\int_{\mathbb{R}}f_n=\int_{\mathbb{R}}f$$

Solution: We need to show that

$$\lim\left(\int f_n-\int f\right)=0.$$

In other words, since

$$\left|\int f_n - \int f\right| = \left|\int (f_n - f)\right| \le \int |f_n - f|,$$

we need to show

$$\lim \int |f_n - f| = 0$$

First we have,

$$\int g + \int |f| = \int (g + |f|)$$

=
$$\int \lim(g_n + |f|)$$

=
$$\int \lim(g_n + |f| - |f_n - f|)$$

Note that $\lim |f_n - f| = 0$ and $|f_n - f| \le |f_n| + |f| \le g_n + |f|$. Hence $g_n + |f| - |f_n - f| \ge 0$. So we may proceed as

$$\int g + \int |f| = \int \lim(g_n + |f| - |f_n - f|)$$

$$\leq \lim \inf \int (g_n + |f| - |f_n - f|) \quad \text{(by Fatou's Lemma)}$$

$$\leq \int g + \int |f| - \limsup \int |f_n - f|).$$

Therefore $\limsup \int |f_n - f| = 0$ and we have

$$\lim \int |f_n - f| = \limsup \int |f_n - f| = 0$$

Consider the sequence of functions

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n.$$

(a) For all $n \ge 1$ and x > -n, show that f_n is monotone increasing and that

$$f_n(x) \leq e^x$$
.

(b) Evaluate

$$\lim_{n\to\infty}\int_0^n f_n(x)e^{-3x}dx.$$

Solution: (a) Note that

$$\left(1+\frac{x}{n}\right)^n \le e^x \quad \Leftrightarrow \quad n\ln\left(1+\frac{x}{n}\right) \le x \quad \Leftrightarrow \quad \ln\left(1+\frac{x}{n}\right) = \ln\left(\frac{x+n}{n}\right) \le \frac{x}{n} = \frac{x+n}{n} - 1$$

The statement is true since $(1 + \frac{x}{n}) = (\frac{x+n}{n}) > 0$ and $\ln t \le t - 1$ for all t > 0. To show that $\{f_n\}$ is monotone increasing, we treat n as a continuous variable and use L'Hospital rule

$$\frac{df_n}{dn} = f_n \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{x+n} \right] \ge 0 \quad \Leftrightarrow \quad \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{x+n} \right] \ge 0 \quad \text{since } f_n > 0.$$

So we need

$$\ln\left(\frac{x+n}{n}\right) \ge \frac{x}{x+n} \quad \Leftrightarrow \quad \ln\left(\frac{n}{x+n}\right) \le -\frac{x+n}{x} = \frac{n}{x+n} - 1$$

which is true since $\frac{n}{x+n} > 0$ and $\ln t \le t - 1$ for all t > 0.

(b) First we write

$$\lim_{n\to\infty}\int_0^n f_n(x)e^{-3x}dx = \lim_{n\to\infty}\int_0^\infty f_n(x)e^{-3x}\chi_{[0,n]}dx.$$

By part (a), the sequence $f_n(x)e^{-3x}\chi_{[0,n]}$ is nonnegative monotone increasing sequence and

$$f_n(x)e^{-3x}\chi_{[0,n]} \to e^x e^{-3x} = e^{-2x}$$
 pointwise.

So by the Monotone Convergence Theorem we get

$$\lim_{n \to \infty} \int_0^n f_n(x) e^{-3x} dx = \lim_{n \to \infty} \int_0^\infty f_n(x) e^{-3x} \chi_{[0,n]} dx = \int_0^\infty e^{-2x} dx = \frac{1}{2}.$$

Let the function *f* be absolutely continuous on [a, b]. Show that *f* is Lipschitz on [a, b] if and only if there exists M > 0 such that $f'(x) \le M$ a.e. on [a, b].

Solution: Suppose *f* is Lipschitz. Then there exists M > 0 such that

$$\left|\frac{f(x+t) - f(x)}{t}\right| \le M$$

for any $x \in (a, b)$ and $t \neq 0$ that satisfy $x + t \in (a, b)$. Since f is absolutely continuous on [a, b] then f is differentiable a.e. on (a, b). Hence

$$|f'(x)| = \lim_{t \to 0} \left| \frac{f(x+t) - f(x)}{t} \right| \le M$$
 a.e.

Conversely, suppose there exists M > 0 such that $|f'| \le M$ a.e. on [a, b]. If x, x' are in [a, b] and $x \le x'$, then f is absolutely continuous on [x, x']. Therefore,

$$|f(x) - f(x')| = \left| \int_{x}^{x'} f' \right|$$
$$\leq \int_{x}^{x'} |f'|$$
$$\leq M(x' - x),$$

that is, f is Lipschitz on [a, b].

Let *E* be a measurable set and $1 \le p < \infty$ and $f_n \to f$ in $L^p(E)$.

- (a) If the Lebesgue measure, *m*, of *E* is finite that is $m(E) < \infty$, show that $f_n \to f$ in $L^s(E)$ for some $1 \le s < p$.
- (b) If $f_n \to f$ a.e on *E* and there exists a real number *M* such that $|f_n| \leq M$ a.e. for all *n*, show that $f_n \to f$ in $L^r(E)$ for some *r* such that $1 \leq p < r < \infty$.

Solution:

(a) Since s < p, let $p_1 = \frac{p}{s}$ and q_1 be such that $\frac{1}{p_1} + \frac{1}{q_1} = 1$, then using Holder Inequality, we have

$$\begin{split} \int_{E} |f_{n} - f|^{s} dm &\leq \| \|f_{n} - f\|^{s} \|_{p1} \|1\|_{q_{1}} \\ &= \left(\int_{E} (|f_{n} - f|^{s})^{p_{1}} dm \right)^{1/p_{1}} \left(\int_{E} dm \right)^{1/q_{1}} \\ &= \left(\int_{E} |f_{n} - f|^{p} dm \right)^{s/p} (m(E))^{1/q_{1}} \\ &= \left(\|f_{n} - f\|_{p} \right)^{s} (m(E))^{1/q_{1}} \end{split}$$

Since $m(E) < \infty$ and $||f_n - f||_p \to 0$ as $n \to \infty$, then $f_n \to f$ in $L^s(E)$.

(b) Let r > p. Since $f_n \to f$ a.e. on E and $|f_n| \le M$ then $|f| \le M$. Therefore $|f_n - f| \le 2M$. Now we have

$$(\|f_n - f\|_r)^r = \int_E |f_n - f|^r dm$$

= $\int_E |f_n - f|^{r-p} |f_n - f|^p dm$
 $\leq \int_E (2M)^{r-p} |f_n - f|^p dm$
= $(2M)^{r-p} \int_E |f_n - f|^p dm$
= $(2M)^{r-p} (\|f_n - f\|_p)^p \to 0$ as $n \to \infty$

Hence $f_n \to f$ in $L^r(E)$

Let (X, \mathcal{M}, μ) be a measure space and $\{h_n\}$ be a sequence of nonnegative integrable functions on *X*. Suppose that $\{h_n(x)\} \to 0$ for almost all $x \in X$. Show that

$$\lim_{n\to\infty}\int_X h_n\,d\mu=0$$

if and only if $\{h_n\}$ is uniformly integrable and tight over X.

Solution: If $\{h_n\}$ is uniformly integrable and tight over *X*, then by the Vitaly Convergence Theorem

$$\lim_{n\to\infty}\int_X h_n\,d\mu=0.$$

Conversely, suppose $\lim_{n\to\infty} \int_X h_n d\mu = 0$. There exists a natural number *N* such that

$$\int_X h_n \, d\mu < \varepsilon$$

for all $n \ge N$. We know that the finite collection of functions $\{h_n\}_{n=1}^N$ is tight over *X*. We therefore can find a set of finite measure $X_0 \in X$ such that

$$\int_{X\sim X_0} |h_n| \, d\mu < \varepsilon.$$

for all n < N. Since

$$\int_{X\sim X_0} |h_n| \, d\mu \leq \int_X |h_n| \, d\mu < \varepsilon.$$

for all $n \ge N$. We conclude that $\{h_n\}$ is tight over X. Note that the finite collection of functions $\{h_n\}_{n=1}^N$ is uniformly integrable. Now Choose $\delta > 0$ such that for $n \ge N$, if $A \subseteq X$ is measurable and $m(A) < \delta$ then

$$\int_A |h_n| d\mu < \varepsilon.$$

Hence we have that

if $A \subseteq X$ is measurable and $m(A) < \delta$, then $\int_A |h_n| d\mu < \varepsilon$ for all *n*. Therefore $\{h_n\}$ is uniformly integrable.

Let X = Y be the interval [0, 1] with A = B the class of Borel sets. Let $\mu = \nu$ be the Lebesgue measure. Consider the function f on $X \times Y$ defined as

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad (x,y) \in X \times Y.$$

(a) Show that

$$\int_X \int_Y f d\mu d\nu \neq \int_Y \int_X f d\nu d\mu.$$

(b) Does part (a) contradict Fubini's theorem? why?

Solution:

(a) First, we compute

$$\begin{split} \int_X \int_Y f d\mu d\nu &= \int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy = \int_0^1 \left[\int_0^1 \frac{2x^2}{(x^2 + y^2)^2} dx - \int_0^1 \frac{x^2 + y^2}{(x^2 + y^2)^2} dx \right] dy \\ &= \int_0^1 \left[\int_0^1 -x \frac{-2x}{(x^2 + y^2)^2} dx - \int_0^1 \frac{dx}{x^2 + y^2} \right] dy \\ &= \int_0^1 \left[\int_0^1 -x \frac{d}{dx} \left(\frac{1}{x^2 + y^2} \right) - \int_0^1 \frac{dx}{x^2 + y^2} \right] dy \\ &= \int_0^1 \left[\frac{-x}{x^2 + y^2} \right]_{x=0}^1 + \int_0^1 \frac{dx}{x^2 + y^2} - \int_0^1 \frac{dx}{x^2 + y^2} \right] dy \\ &= \int_0^1 \frac{-1}{1 + y^2} dy = -\tan^{-1} y \Big|_0^1 = -\frac{\pi}{4}. \end{split}$$

Then

$$\int_{Y} \int_{X} f d\mu d\nu = \int_{0}^{1} \int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dy dx = \frac{\pi}{4}.$$

(b) Part (a) does not contradict Fubini's theorem, since *f* is not integrable over $X \times Y$ with respect to the product measure $\mu \times \nu$. Indeed

$$\begin{split} \int_{X \times Y} |f| d(\mu \times \nu) &= \int_{[0,1] \times [0,1]} \left| \frac{x^2 - y^2}{(x^2 + y^2)^2} \right| d(\mu \times \nu) \\ &= \int_0^1 \int_0^1 \left| \frac{x^2 - y^2}{(x^2 + y^2)^2} \right| dx dy \\ &= \int_0^1 \left[\int_0^y \frac{y^2 - x^2}{(x^2 + y^2)^2} dx + \int_y^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right] dy \\ &= \int_0^1 \left[\frac{x}{x^2 + y^2} \Big|_0^y - \frac{x}{x^2 + y^2} \Big|_y^1 \right] dy \quad \text{(from part (a) solution)} \\ &= \int_0^1 \left[\frac{1}{2y} - \frac{1}{1 + y^2} + \frac{1}{2y} \right] dy \\ &= \int_0^1 \left[\frac{1}{y} - \frac{1}{1 + y^2} \right] dy \\ &= \lim_{t \to 0+} \int_t^1 \frac{dy}{y} - \tan^{-1}(y) \Big|_0^1 \\ &= \lim_{t \to 0+} -\ln t - \frac{\pi}{4} = \infty \end{split}$$