PHD COMPREHENSIVE EXAM

Duration: 180 minutes

Let *E* have finite outer measure. Show that *E* is measurable if and only if for each open, bounded interval (a, b) , $b - a = m[*](a, b) ∩ E) + m[*](a, b) ∼ E$).

Solution: Let *E* be measurable. We have

$$
b - a = m^*((a, b)) = m^*((a, b) \cap E) + m^* ((a, b) \cap E^C)
$$

= $m^*((a, b) \cap E) + m^* ((a, b) \sim E)$

Conversely, suppose the equality holds. Let *A* be any set with $m^*(A) < \infty$. Let $\varepsilon > 0$. Choose a countable collection of open intervals $\{(a_k, b_k\}_{k=1}^{\infty}$ that covers *A* and

$$
\sum_{k=1}^{\infty} \ell(a_k, b_k) < m^*(A) + \varepsilon.
$$

Thus,

$$
m^*(A) > \sum_{k=1}^{\infty} (b_k - a_k) - \varepsilon
$$

\n
$$
\geq \sum_{k=1}^{\infty} m^* ((a_k, b_k) \cap E) + m^* ((a, b) \sim E^C) - \varepsilon
$$

\n
$$
\geq \bigcup_{k=1}^{\infty} m^* [m^*(a_k, b_k) \cap E] + \bigcup_{k=1}^{\infty} m^* [m^*(a_k, b_k) \sim E] - \varepsilon
$$

\n
$$
\geq m^*(A \cap E) + m^*(A \sim E^C) - \varepsilon.
$$

Since this holds for every $\varepsilon > 0$, we obtain

$$
m^*(A) \ge m^*(A \cap E) + m^*\left(A \sim E^C\right).
$$

Hence *A* is measurable.

- (a) For the function *f* and the set *F* in the statement of Lusin's Theorem, show that the restriction of *f* to *F* is a continuous function.
- (b) Prove the extension of Lusin's Theorem to the case that *f* is not necessarily real-valued, but may be finite a.e.

Solution:

1. Fix $x \in F$ and let $\varepsilon > 0$. Since *g* is continuous, there exists $\delta > 0$ such that

if
$$
|x'-x| < \delta
$$
, then $|g(x') - g(x)| < \varepsilon$.

Since $f = g$ on F , we have

if
$$
x \in F
$$
 and $|x'-x| < \delta$, then $|f(x') - f(x)| < \varepsilon$.

Thus, *f* is continuous on *F*.

2. Suppose *f* is an extended real-valued function on *E* that is finite a.e. Let *ε* > 0 and let

$$
E_0 = \{x \in E : f \text{ is finite}\}.
$$

Lusin's theorem implies that there exists a continuous function *g* on **R** and a closed set *F* contained in *E*⁰ for which

$$
f = g \text{ on } F \text{ and } m(E_0 \sim F) < \varepsilon.
$$

But since

$$
E = (E \sim E_0) \cup E_0 \text{ and } m(E \sim E_0) = 0,
$$

we also have

$$
m(E \sim F) \le m(E \sim E_0 \sim F) + m(E_0 \sim F) = m(E_0 \sim F) < \varepsilon.
$$

Let $\{f_n\}$ be a sequence of integrable functions on *E* for which $f_n \to f$ a.e. on *E* and *f* is integrable over *E*. Show that

$$
\int_E|f-f_n|\to 0
$$

if and only if $\lim_{n\to\infty} \int_E |f_n| = \int_E |f|$. (Hint: Use the General Lebesgue Dominated Convergence Theorem.)

Solution: Suppose $\int_E |f - f_n| \to 0$. Since

$$
||f_n|-|f||\leq |f_n-f|
$$

on *E* for all *n* and $|f_n| - |f| \to 0$ a.e. on *E*, we have

$$
\lim_{n\to\infty}\int_E(|f_n|-|f|)=0
$$

by the General Lebesgue Dominated Convergence Theorem. Since *f* is integrable, we have

$$
\lim_{n\to\infty}\int_E|f_n|=\int_E|f|.
$$

Conversely, suppose

$$
\lim_{n\to\infty}\int_E|f_n|=\int_E|f|.
$$

Then

$$
\lim_{n\to\infty}\int_E(|f_n|+|f|)=2\int_E|f|<\infty.
$$

Since

$$
|f_n - f| \le |f_n| + |f|
$$

on *E* for all *n* and $|f_n - f| \to 0$ a.e. on *E*, we have

$$
\int_E |f - f_n| \to 0.
$$

by the General Lebesgue Dominated Convergence Theorem.

Consider the sequence of functions

$$
f_n(x) = \left(1 + \frac{x}{n}\right)^n.
$$

(a) For all $n \ge 1$ and $x > -n$, show that f_n is monotone increasing and that

$$
f_n(x)\leq e^x.
$$

(b) Evaluate

$$
\lim_{n\to\infty}\int_0^n f_n(x)e^{-5x}dx.
$$

Solution: (a) Note that

$$
\left(1+\frac{x}{n}\right)^n \le e^x \quad \Leftrightarrow \quad n\ln\left(1+\frac{x}{n}\right) \le x \quad \Leftrightarrow \quad \ln\left(1+\frac{x}{n}\right) = \ln\left(\frac{x+n}{n}\right) \le \frac{x}{n} = \frac{x+n}{n} - 1
$$

The statement is true since $\left(1 + \frac{x}{n}\right) = \left(\frac{x+n}{n}\right)$ $\left(\frac{+n}{n}\right) > 0$ and $\ln t \leq t - 1$ for all $t > 0$. To show that { *fn*} is monotone increasing, we treat *n* as a continuous variable and use L'Hospital rule

$$
\frac{df_n}{dn} = f_n \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{x+n} \right] \ge 0 \quad \Leftrightarrow \quad \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{x+n} \right] \ge 0 \quad \text{since } f_n > 0.
$$

So we need

$$
\ln\left(\frac{x+n}{n}\right) \ge \frac{x}{x+n} \quad \Leftrightarrow \quad \ln\left(\frac{n}{x+n}\right) \le -\frac{x+n}{x} = \frac{n}{x+n} - 1
$$

which is true since $\frac{n}{x+n} > 0$ and $\ln t \leq t - 1$ for all $t > 0$.

(b) First we write

$$
\lim_{n\to\infty}\int_0^n f_n(x)e^{-5x}dx = \lim_{n\to\infty}\int_0^\infty f_n(x)e^{-5x}\chi_{[0,n]}dx.
$$

By part (a), the sequence $f_n(x)e^{-5x}\chi_{[0,n]}$ is nonnegative monotone increasing sequence and

$$
f_n(x)e^{-5x}\chi_{[0,n]} \to e^x e^{-5x} = e^{-4x}
$$
 pointwise.

So by the Monotone Convergence Theorem we get

$$
\lim_{n \to \infty} \int_0^n f_n(x) e^{-5x} dx = \lim_{n \to \infty} \int_0^\infty f_n(x) e^{-5x} \chi_{[0,n]} dx = \int_0^\infty e^{-4x} dx = \frac{1}{4}.
$$

If f is continuous on $[a, b]$ and f' exists and is bounded on (a, b) , then show that f is absolutely continuous on $[a, b]$.

Solution: Since f' exists and bounded on (a, b) , there exists $M > 0$ such that $f'(x) < M$ for all $x \in (a, b)$. Let $\varepsilon > 0$ and coinsider

$$
\sum_{i=1}^n |f(d_i) - f(c_i)|
$$

where $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of non-overlapping intervals in $[a, b]$ such that

$$
\sum_{i=1}^n |d_i - c_i| < \varepsilon / M.
$$

We have

$$
\sum_{i=1}^n |f(d_i) - f(c_i)| = \sum_{i=1}^n \frac{|f(d_i) - f(c_i)|}{|d_i - c_i|} |d_i - c_i|.
$$

The Mean Value Theorem tells us that for every *i* there exists $x_i \in [c_i, d_i]$ such that

$$
\frac{|f(d_i) - f(c_i)|}{|d_i - c_i|} = f'(x_i) < M.
$$

Thus, we can write

$$
\sum_{i=1}^{n} |f(d_i) - f(c_i)| = \sum_{i=1}^{n} \frac{|f(d_i) - f(c_i)|}{|d_i - c_i|} |d_i - c_i|
$$

$$
< \sum_{i=1}^{n} M |d_i - c_i|
$$

$$
= M \sum_{i=1}^{n} |d_i - c_i|
$$

$$
< M \frac{\varepsilon}{M} = \varepsilon.
$$

Hence, f is absolutely continuous on $[a, b]$.

Assume *E* has finite measure and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence of measurable functions that converge pointwise a.e. on *E* to *f*. For $1 \leq p < \infty$, show that $\{f_n\} \to f$ in $L^p(E)$ if there is $\alpha > 0$ such that $\{f_n\}$ belongs to and is bounded as a subset of $L^{p+\alpha}(E)$.

Solution: By the assumption, there exists a real number *M* such that $||f_n||_{p+\alpha} \leq M$ for all *n*. By Fatou's Lemma we have

$$
\int_E |f|^{p+\alpha} \leq \liminf_{n\to\infty} \int_E |f_n|^{p+\alpha} \leq M^{p+\alpha} < \infty.
$$

That is $f \in L^{p+\alpha}(E)$. This implies that *f* and $\{f_n\}$ are in $L^p(E)$. It remains to show that

 $|| f_n - f ||$ → 0.

By Holder's Inequaltiy, we have

$$
\int_A |f_n - f|^p \le ||f_n - f||_{p+\alpha}^p \cdot m(A)^{\alpha/(p+\alpha)}
$$

for any measurable set $A \subseteq E$. By Minkowski's Inequality,

$$
||f_n - f||_{p+\alpha} \le ||f_n||_{p+\alpha} + ||f||_{p+\alpha} \le 2 \cdot M.
$$

Hence,

$$
\int_A |f_n - f|^p \le 2^p \cdot M^p \cdot m(A)^{\alpha/(p+\alpha)}.
$$

Thus, for any $\varepsilon > 0$, we have

$$
\int_A |f_n - f|^p < \varepsilon
$$

as long as

$$
m(A) < \left(\frac{\varepsilon}{2^p \cdot M^p}\right)^{(p+\alpha)/\alpha}.
$$

Therefore $\{ |f_n - f|^p \}$ is uniformly integrable over E, which implies that

$$
\lim_{n\to\infty}\int_E|f_n-f|^p=0
$$

by the Vitali Convergence Theorem.

Let (X, M, μ) be a measure space and $\{h_n\}$ be a sequence of nonnegative integrable functions on *X*. Suppose that $\{h_n(x)\}\to 0$ for almost all $x \in X$. Show that

$$
\lim_{n\to\infty}\int_X h_n\,d\mu=0
$$

if and only if {*hn*} is uniformly integrable and tight over *X*.

Solution: If $\{h_n\}$ is uniformly integrable and tight over *X*, then by the Vitaly Convergence Theorem

$$
\lim_{n\to\infty}\int_X h_n\,d\mu=0.
$$

Conversely, suppose $\lim_{n\to\infty} \int_X h_n d\mu = 0$. There exists a natural number *N* such that

$$
\int_X h_n \, d\mu < \varepsilon
$$

for all $n \geq N$. We know that the finite collection of functions $\{h_n\}_{n=1}^N$ is tight over *X*. We therefore can find a set of finite measure $X_0 \in X$ such that

$$
\int_{X\sim X_0} |h_n| \, d\mu < \varepsilon.
$$

for all $n < N$. Since

$$
\int_{X\sim X_0} |h_n| d\mu \leq \int_X |h_n| d\mu < \varepsilon.
$$

for all *n* \geq *N*. We conclude that $\{h_n\}$ is tight over *X*. Note that the finite collection of functions $\{h_n\}_{n=1}^N$ is uniformly integrable. Now Choose $\delta > 0$ such that for $n \geq N$, if $A \subseteq X$ is measurable and $m(A) < \delta$ then

$$
\int_A |h_n| d\mu < \varepsilon.
$$

Hence we have that

if
$$
A \subseteq X
$$
 is measurable and $m(A) < \delta$, then $\int_A |h_n| d\mu < \varepsilon$ for all *n*.

Therefore $\{h_n\}$ is uniformly integrable.

Let $\mathbb N$ be the set of natural numbers, and let $\mathcal M=2^{\mathbb N}$ and c be the counting measure by setting *c*(*E*) equal to the number of points in *E* if *E* is finite and ∞ if *E* is infinite. Let (X, \mathcal{A}, μ) = $(Y, \mathcal{B}, v) = (\mathbb{N}, \mathcal{M}, c)$. Define $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ by

$$
f(x,y) = \begin{cases} 2 - 2^{-x} & \text{if } x = y, \\ -2 + 2^{-x} & \text{if } x = y + 1, \\ 0 & \text{otherwise.} \end{cases}
$$

- (a) Show that *f* is measurable with respect to the product measure $c \times c$.
- (b) Show that

$$
\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n)dc(m) \right] dc(n) \neq \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m,n)dc(n) \right] dc(m).
$$

(c) Is this a contradiction either of Fubini's theorem or Tonelli's theorem ?

Solution:

- (a) Since $\mathbb N$ is countable, it has measure zero. The only set which has $c \times c$ measure zero is the empty set. Hence, $c \times c$ measurable set of $\mathbb{N} \times \mathbb{N}$ are all the subsets. Therefore, *f* is measurable.
- (b) We know that

$$
\int_{\mathbb{N}} f \, d\mathfrak{c} = \sum_{k=1}^{\infty} f(k).
$$

For convenience, let $dx = dc(m)$ and $dy = dc(n)$ Hence,

$$
\int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(x, y) dx \right) dy = \int_{\mathbb{N}} \left(\sum_{x \in \mathbb{N}} f(x, y) \right) dy
$$

\n
$$
= \int_{\mathbb{N}} [f(y, y) + f(y + 1, y)] dy
$$

\n
$$
= \int_{\mathbb{N}} \left(2 - 2^{-y} - 2 + 2^{-y-1} \right) dy = \int_{\mathbb{N}} \frac{-1}{2^{y+1}} dy
$$

\n
$$
= \sum_{y=1}^{\infty} \frac{-1}{2^{y+1}} = -\frac{1}{2}
$$

On the other hand,

$$
\int_{\mathbb{N}} \left(\int_{\mathbb{N}} f(x, y) dy \right) dx = \int_{\mathbb{N}} \left(\sum_{y \in \mathbb{N}} f(x, y) \right) dx, \text{ let } h(x) = \sum_{y \in \mathbb{N}} f(x, y)
$$

$$
= \int_{\mathbb{N}} [h(x)] dx
$$

$$
= \sum_{x=1}^{\infty} h(x) = h(1) + \sum_{x=2}^{\infty} h(x) = h(1)
$$

$$
= f(1, 1) = 1.5
$$

(c) No, because *f* assumes negative values and not integrable.