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Exam Solution

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give
its name or a statement of the theorem.



Exercise 1
Compute ∫ 2π

0

cos θ

cos θ − i
dθ

Solution: Let I denote
I =

∫ 2π

0

cos θ

cos θ − i
dθ.

Put z = eiθ, so cos θ = 1
2
(z + 1

z
) and dθ = dz

iz
. We obtain

I =

∮
|z|=1

z2 + 1

iz(z2 − 2iz + 1)
dz.

The function
f(z) =

z2 + 1

iz(z2 − 2iz + 1)

has 3 simple poles at z = 0 and z = (1±
√

2)i. Remark that only 0 and (1−
√

2)i are
inside the unit circle. By the residue theorem, we have

I = 2πi(Res(f, 0) + Res(f, (1−
√

2)i).

Next, we prove that

(Res(f, 0) = −i, Res(f, (1−
√

2)i =
1√
2
i.

Finally,
I = 2π(1− 1√

2
).
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Exercise 2
Let f and g be polynomials with deg(g) > deg(f) + 1.

(a) Show that lim
R→∞

∫
|z|=R

f(z)

g(z)
dz = 0.

(b) Use (a) to show that the sum of the residues of f
g

at all its poles is zero.

Solution:
(a) Let n = degf and m = degg, by assumption, we have m ≥ n+ 2. We have

f(z)

g(z)
= zn−mH(z),

where H is a rational function having finite limit as |z| goes to infinity. Hence for
|z| large, it yields ∣∣∣∣f(z)

g(z)

∣∣∣∣ ≤M |z|n−m.

Therefore, for R large, ∣∣∣∣∫
|z|=R

f(z)

g(z)
dz

∣∣∣∣ ≤ 2πM

Rm−n−1 → 0,

and we conclude lim
R→∞

∫
|z|=R

f(z)

g(z)
dz = 0.

(b) As f/g is a rational function, it has a finite number of poles. By the residue
theorem, we get ∫

|z|=R

f(z)

g(z)
dz = sum of the residues of f

g
,

for any R sufficiently large. By (a), we conclude that sum of the residues of f/g is
zero.
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Exercise 3
Let f and g be two entire functions such that

|f(z)| ≤ |g(z)| for all z ∈ C.

Show that f = cg, for some constant c ∈ C with |c| ≤ 1.

Solution: First, we may assume that g is non zero. As if g = 0, the conclusion is
trivial. Consider

h(z) =
f(z)

g(z)
.

The function h has isolated singularities. These singularities are removable as h is
bounded by assumption. Therefore h can be extended to an entire function, de-
noted by h̃ satisfying |h̃(z)| ≤ 1. By Liouville theorem, we conclude that h̃ is equal
to some constant c with |c| ≤ 1. Finally, we conclude that f(z) = cg(z) with |c| ≤ 1.
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Exercise 4
Let D be the unit disc and H = {z ∈ C : Im(z) > 0}.

(a) Show that the function ϕ : H → D defined by ϕ(z) =
z − i
z + i

is an analytic bijec-
tion with an analytic inverse.

(b) Let f : D \ {0} → H be an analytic function. Study the nature of its singularity
at zero.

Solution:

(a) The Cayley transform ϕ(z) =
z − i
z + i

sends {∞, 1,−1} to {1,−i, i}. ϕ maps the
real line to the unit circle. Furthermore, since ϕ is continuous and i is taken to 0 by
ϕ, the upper half-plane is mapped to the unit disc.

(b) Let f : D \ {0} → H be an analytic function. Then

g := ϕ ◦ f : D \ {0} → D

is analytic and bounded, thus g has a removable singularity at zero, and it follows
that f has a removable singularity at zero.
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Exercise 5
Let f be an analytic function on a nonempty open connected set Ω ⊂ C. Let a ∈ Ω
be a local minimum of |f |.

(a) Prove that either f(a) = 0 or f is constant on Ω.
(b) Prove or disprove that there exists an analytic function f on the unit disc D such

that |f(z)|2 = |z|2 + 1 for all z ∈ D.

Solution:
(a) Suppose that f(a) 6= 0, by assumption, there existsR > 0, such thatD(a,R) ⊂ Ω
and

|f(a)| = min
z∈D(a,R)

|f(z)| > 0.

Thus g :=
1

f
is analytic on D(a,R) and |g| has a local maximum at a. Hence f is

constant on Ω as Ω is connected.

(b) If there exists such function f such that |f(z)|2 = |z|2+1. Remark that |f(z)| ≥ 1
and |f(0)| = 1. We deduce that |f | attains its minimum at z = 0. By (a), it follows
that f is constant, and we get a contradiction.
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Exercise 6
Let (fn) be a sequence of analytic functions inside and on |z| = 1. Suppose that fn
converges uniformly to f inside and on |z| = 1.
Show if f has no zeros on |z| = 1, then the number of zeros of f inside |z| = 1 is
equal to the number of zeros of fn inside |z| = 1 for sufficiently large n.

Solution: Let
ε = min

|z|=1
|f(z)| > 0.

As fn converges uniformly to f on |z| = 1, for n large, we get

sup
|z|=1

|fn(z)− f(z)| < ε,

which implies that
|fn(z)− f(z)| < |f(z)| on |z| = 1.

By Rouché theorem, we conclude that for n large, the number of zeros of fn is equal
to the number of zeros of f inside |z| = 1.
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Exercise 7
Let Ω ⊂ C be a bounded domain and let

f : Ω→ Ω

be an analytic function. Suppose that f(z0) = z0 for a point z0 in Ω. Let

fn := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n-times

(a) Prove by induction that (fn)′(z0) = (f ′(z0))
n, for all n ≥ 1.

(b) Prove that |(fn)′(z0)| ≤ C for all n ≥ 1, for some constant C.
(c) Deduce that |f ′(z0)| ≤ 1.
(d) In addition, assume that f is an automorphism of Ω. What is the value of |f ′(z0)|

?

Solution:
(a) Use the chain rule
(b) Let r > 0 such that D(z0, r) ⊂ Ω. By the Cauchy estimate, we have

|f ′n(z0)| ≤
Mn

r
,

whereMn = sup
w∈D(z0,r)

|fn(w)|. Since Ω is bounded, we conclude thatMn is bounded,

and the conclusion follows.

(c) From (a) and (b) we deduce that |f ′(z0)|n is bounded, hence |f ′(z0)| ≤ 1.
(d) By considering f−1, conclude that |f ′(z0)| = 1.
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