King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables I Comprehensive Exam – Term 212 Exam Solution

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Compute

$$
\int_0^{2\pi}\frac{\cos\theta}{\cos\theta-i}\,d\theta
$$

Solution: Let I denote

$$
I = \int_0^{2\pi} \frac{\cos \theta}{\cos \theta - i} \, d\theta.
$$

Put $z=e^{i\theta}$, so $\cos\theta=\frac{1}{2}$ $rac{1}{2}(z + \frac{1}{z})$ $\frac{1}{z}$) and $d\theta = \frac{dz}{iz}$. We obtain

$$
I = \oint_{|z|=1} \frac{z^2 + 1}{iz(z^2 - 2iz + 1)} dz.
$$

The function

$$
f(z) = \frac{z^2 + 1}{iz(z^2 - 2iz + 1)}
$$

has 3 simple poles at $z=0$ and $z=(1\pm$ √ $(2)i$. Remark that only 0 and $(1 -$ √ $\left(2\right) i$ are inside the unit circle. By the residue theorem, we have

$$
I = 2\pi i(\text{Res}(f, 0) + \text{Res}(f, (1 - \sqrt{2})i).
$$

Next, we prove that

$$
(\text{Res}(f, 0) = -i, \quad \text{Res}(f, (1 - \sqrt{2})i = \frac{1}{\sqrt{2}}i.
$$

Finally,

$$
I = 2\pi \left(1 - \frac{1}{\sqrt{2}}\right).
$$

Let f and g be polynomials with $\deg(g) > \deg(f) + 1$.

(a) Show that
$$
\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{g(z)} dz = 0.
$$

(b) Use (a) to show that the sum of the residues of $\frac{f}{g}$ at all its poles is zero.

Solution:

(a) Let $n = \deg f$ and $m = \deg g$, by assumption, we have $m \geq n + 2$. We have

$$
\frac{f(z)}{g(z)} = z^{n-m} H(z),
$$

where *H* is a rational function having finite limit as $|z|$ goes to infinity. Hence for $|z|$ large, it yields

$$
\left|\frac{f(z)}{g(z)}\right| \le M|z|^{n-m}.
$$

Therefore, for R large,

$$
\left| \int_{|z|=R} \frac{f(z)}{g(z)} dz \right| \le \frac{2\pi M}{R^{m-n-1}} \to 0,
$$

and we conclude $\lim\limits_{R\to\infty}\int_{|z|=R}$ $f(z)$ $\frac{f(z)}{g(z)} dz = 0.$

(b) As f/g is a rational function, it has a finite number of poles. By the residue theorem, we get

$$
\int_{|z|=R} \frac{f(z)}{g(z)} dz = \text{sum of the residues of } \frac{f}{g},
$$

for any R sufficiently large. By (a), we conclude that sum of the residues of f/g is zero.

Let f and g be two entire functions such that

$$
|f(z)| \le |g(z)| \text{ for all } z \in \mathbb{C}.
$$

Show that $f = cg$, for some constant $c \in \mathbb{C}$ with $|c| \leq 1$.

Solution: First, we may assume that g is non zero. As if $g = 0$, the conclusion is trivial. Consider

$$
h(z) = \frac{f(z)}{g(z)}.
$$

The function h has isolated singularities. These singularities are removable as h is bounded by assumption. Therefore h can be extended to an entire function, denoted by \tilde{h} satisfying $|\tilde{h}(z)| \leq 1$. By Liouville theorem, we conclude that \tilde{h} is equal to some constant c with $|c| \leq 1$. Finally, we conclude that $f(z) = cg(z)$ with $|c| \leq 1$.

Let $\mathbb D$ be the unit disc and $\mathbb H = \{z \in \mathbb C : \text{Im}(z) > 0\}.$

- (a) Show that the function $\varphi : \mathbb{H} \to \mathbb{D}$ defined by $\varphi(z) = \frac{z i}{z + i}$ is an analytic bijection with an analytic inverse.
- (b) Let $f : \mathbb{D} \setminus \{0\} \to \mathbb{H}$ be an analytic function. Study the nature of its singularity at zero.

Solution:

(a) The Cayley transform $\varphi(z) = \frac{z - i}{z + i}$ sends $\{\infty, 1, -1\}$ to $\{1, -i, i\}$. φ maps the real line to the unit circle. Furthermore, since φ is continuous and *i* is taken to 0 by φ , the upper half-plane is mapped to the unit disc.

(b) Let $f : \mathbb{D} \setminus \{0\} \to \mathbb{H}$ be an analytic function. Then

$$
g := \varphi \circ f : \mathbb{D} \setminus \{0\} \to \mathbb{D}
$$

is analytic and bounded, thus g has a removable singularity at zero, and it follows that f has a removable singularity at zero.

Let f be an analytic function on a nonempty open connected set $\Omega \subset \mathbb{C}$. Let $a \in \Omega$ be a local minimum of $|f|$.

- (a) Prove that either $f(a) = 0$ or f is constant on Ω .
- (b) Prove or disprove that there exists an analytic function f on the unit disc D such that $|f(z)|^2 = |z|^2 + 1$ for all $z \in \mathbb{D}$.

Solution:

(a) Suppose that $f(a) \neq 0$, by assumption, there exists $R > 0$, such that $D(a, R) \subset \Omega$ and

$$
|f(a)| = \min_{z \in D(a,R)} |f(z)| > 0.
$$

Thus $g :=$ 1 $\frac{1}{f}$ is analytic on $D(a,R)$ and $|g|$ has a local maximum at a . Hence f is constant on Ω as Ω is connected.

(b) If there exists such function f such that $|f(z)|^2 = |z|^2 + 1$. Remark that $|f(z)| \ge 1$ and $|f(0)| = 1$. We deduce that $|f|$ attains its minimum at $z = 0$. By (a), it follows that f is constant, and we get a contradiction.

Let (f_n) be a sequence of analytic functions inside and on $|z|=1$. Suppose that f_n converges uniformly to f inside and on $|z| = 1$.

Show if f has no zeros on $|z| = 1$, then the number of zeros of f inside $|z| = 1$ is equal to the number of zeros of f_n inside $|z|=1$ for sufficiently large n.

Solution: Let

$$
\varepsilon = \min_{|z|=1} |f(z)| > 0.
$$

As f_n converges uniformly to f on $|z|=1$, for n large, we get

$$
\sup_{|z|=1} |f_n(z) - f(z)| < \varepsilon,
$$

which implies that

$$
|f_n(z) - f(z)| < |f(z)| \text{ on } |z| = 1.
$$

By Rouché theorem, we conclude that for n large, the number of zeros of f_n is equal to the number of zeros of f inside $|z| = 1$.

Let $\Omega \subset \mathbb{C}$ be a *bounded domain* and let

 $f : \Omega \to \Omega$

be an analytic function. Suppose that $f(z_0) = z_0$ for a point z_0 in Ω . Let

$$
f_n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{-times}}
$$

- (a) Prove by induction that $(f_n)'(z_0) = (f'(z_0))^n$, for all $n \ge 1$.
- (b) Prove that $|(f_n)'(z_0)| \le C$ for all $n \ge 1$, for some constant C.
- (c) Deduce that $|f'(z_0)| \leq 1$.
- (d) In addition, assume that f is an automorphism of Ω . What is the value of $|f'(z_0)|$?

Solution:

- (a) Use the chain rule
- (b) Let $r > 0$ such that $\overline{D(z_0, r)} \subset \Omega$. By the Cauchy estimate, we have

$$
|f'_n(z_0)| \le \frac{M_n}{r},
$$

where $M_n = \sup$ $w \in D(z_0,r)$ $|f_n(w)|$. Since Ω is bounded, we conclude that M_n is bounded, and the conclusion follows.

(c) From (a) and (b) we deduce that $|f'(z_0)|^n$ is bounded, hence $|f'(z_0)| \leq 1$. (d) By considering f^{-1} , conclude that $|f'(z_0)| = 1$.