King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables Comprehensive Exam – Term 231 Solution

1. (20 points)

Let $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$ be the upper half plane. Prove the following

- (a) If $\alpha \notin H$ and $\beta \in H$, then $\frac{1}{\alpha \beta} \in H$.
- (b) For any $\xi_1, \ldots, \xi_k \in H$, $\xi_1 + \ldots + \xi_k \in H$, in particular, $\xi_1 + \ldots + \xi_k \neq 0$.
- (c) Let *P* be a polynomial with zeros z_1, \ldots, z_k (possibly repeated)

$$\frac{P'(z)}{P(z)} = \frac{1}{z - z_1} + \ldots + \frac{1}{z - z_k}$$

(d) Using the previous questions, prove the following:" Let *P* be a polynomial. Suppose all the zeros of *P* lie in *H*. Then all the zeros of *P*' also lie in *H*".

Solution: (a) By assumption, we have

Im
$$\beta > 0$$
 and Im $\alpha \leq 0$.

$$\frac{1}{\alpha - \beta} = \frac{\overline{\alpha} - \overline{\beta}}{|\alpha - \beta|^2}$$

Thus

$$\mathrm{Im}\frac{1}{\alpha-\beta} = \frac{\mathrm{Im}\,\beta - \mathrm{Im}\,\alpha}{|\alpha-\beta|^2} > 0$$

(b) $\operatorname{Im}(\xi_1 + \ldots, \xi_k) = \operatorname{Im}(\xi_1) \ldots + \operatorname{Im}(\xi_k).$

(c) Write

$$P(z) = C(z - z_1) \dots (z - z_k)$$

$$P'(z) = C(z-z_2)\dots(z-z_k) + C(z-z_1)(z-z_3)\dots(z-z_k) + \dots + C(z-z_1)\dots(z-z_{k-1}).$$

Hence

$$\frac{P'(z)}{P(z)} = \frac{1}{z - z_1} + \ldots + \frac{1}{z - z_k}.$$

(d) Assume there exists w, a zero of P' and $w \notin H$. Then

$$\frac{P'(w)}{P(w)} = 0$$

By (c), we get

$$\frac{1}{w-z_1}+\ldots+\frac{1}{w-z_k}=0$$

We get a contradiction as for $i \in [[1..k]]$, we have

$$\frac{1}{w-z_i} \in H.$$

2. (15 points)

Let f be an analytic function on $\Omega=\{z\in\mathbb{C}:|z|<4\}.$ Suppose that |f(z)|<1 on $\Omega.$ Let

$$g(z) = f(z) + z - 2.$$

- (a) Prove that all the zeros of g lie in the disc $D = \{z \in \mathbb{C} : |z 2| < 1\}.$
- (b) Using Rouché theorem, prove that g has only one zero inside Ω .
- (c) What is g if $\Omega = \mathbb{C}$?

Solution: (a) Let z_0 be a zero of g, then

$$z_0 - 2 = -f(z_0).$$

Thus $|z_0 - 2| = |f(z_0)| < 1.$

(b) Let h(z) = z - 2, trivially we have |h(z)| = 1 on ∂D . Moreover

$$|g(z) - h(z)| = |f(z)| < |h(z)|, \text{ on } \partial D.$$

Thus, by Rouché theorem g has only one zero inside the disc D. Since all the zeros of g are located inside D, we deduce that g has only one zero inside Ω .

(c) If $\Omega = \mathbb{C}$, by Liouville theorem, *f* is constant and g(z) = z + C, with $C \in \mathbb{C}$.

3. (10 points) Evaluate

$$\int_0^{2\pi} \frac{\cos^2\theta}{5+3\sin\theta} d\theta.$$

Solution: Let $z = e^{i\theta}$. Then

$$\cos\theta = \frac{z + \frac{1}{z}}{2}, \quad \sin\theta = \frac{z - \frac{1}{z}}{2i}, \quad d\theta = \frac{dz}{iz}.$$

Hence

$$I = \int_0^{2\pi} \frac{\cos^2 \theta}{5+3\sin\theta} d\theta = \frac{1}{2} \int_{|z|=1} \frac{z^4 + 2z^2 + 1}{z^2(3z+i)(z+3i)} dz = \pi i (\operatorname{Res}(f,i) + \operatorname{Res}(f,-i/3)),$$

where

$$f(z) = \frac{z^4 + 2z^2 + 1}{z^2(3z+i)(z+3i)}$$

Thus

$$I = \pi i \left(-\frac{10i}{9} + \frac{8i}{9} \right) = \frac{2\pi}{9}.$$

4. (10 points) Let Ω be a bounded domain in the complex plane. Suppose that f is continuous on $\overline{\Omega}$ and analytic on Ω . Assume |f(z)| = 1 for all $z \in \partial \Omega$, the boundary of Ω .

Show that *f* is a constant function or *f* has a zero on Ω .

Solution: Assume that *f* has no zeros in Ω . Then by the maximum and the minimum principle (as *f* has no zeros), |f(z)| attains its maximum and its minimum on $\partial\Omega$. Hence

|f| = 1 on $\overline{\Omega}$.

Thus *f* is constant on Ω .

- 5. (20 points) Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function such that $\lim_{|z|\to\infty} |f(z)| = +\infty$.
 - (a) Prove that f has a finite number of zeros in \mathbb{C} .
 - (b) Prove that there exists a polynomial *P* such that $f = \frac{P}{g}$, where *g* is holomorphic in \mathbb{C} and $g(z) \neq 0$, for all $z \in \mathbb{C}$.
 - (c) Prove that there exists R > 0 such that $|g(z)| \le |P(z)|$, for all $|z| \ge R$ and that g is a polynomial.
 - (d) Deduce that there exists a constant *c* such that f = cP.

Solution: (a) By assumption, there exists R > 0 such that

$$|f(z)| \ge 1 \text{ if } |z| > R.$$

Hence all the zeros are inside the closed disc $\overline{D}(0, R)$. As the zeros of f are isolated, a compact set contains only a finite number. Therefore, f has a finite number of zeros.

(b) Let a_1, \ldots, a_k be the zeros of f then

$$f(z) = (z - a_1) \dots (z - a_k)h(z)$$

where h is a non-vanishing entire function. Put

$$P(z) = (z - a_1) \dots (z - a_k),$$
$$g(z) = \frac{1}{h(z)}.$$

(c) Let R be chosen in (a). Then

$$1 < |f(z)| = \frac{|P(z)|}{|g(z)|}.$$

Hence

$$|g(z)| \le |P(z)| \text{ for } |z| > R.$$

As *P* is a polynomial of degree *k*, then there exists $R_1 > 0$ such that

$$|P(z)| \le C|z|^k$$
 if $|z| > R_1$.

Thus for |z| large, we have

 $|g(z)| \le C|z|^k.$

For all $n \ge 0$

$$g^{(n)}(0) = \frac{n!}{2\pi i} \int_{|z|=r} \frac{g(z)}{z^{n+1}} dz$$
$$|g^{(n)}(0)| \le \frac{Cn!}{r^{n-k}} \to 0 \text{ as } r \to \infty, \text{ if } n \ge k+1$$

Therefore g is a polynomial of degree $\leq k$.

(d) If *g* is a non constant polynomial, then *g* has a zero by the fundamental theorem of algebra. Since *g* is a non vanishing entire function, we conclude that *g* is constant.

- 6. (15 points) Let *f* be an analytic function on \mathbb{C} .
 - (a) Prove that for any $\alpha, \beta \in \mathbb{C}$, with $\alpha \neq \beta$, we have for $R > \max(|\alpha|, |\beta|)$

$$\frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = \frac{f(\alpha) - f(\beta)}{\alpha - \beta}$$

(b) Show if f is bounded, then

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = 0.$$

(c) Using ONLY (a) and (b), show that if f is analytic and bounded on \mathbb{C} , then f is constant. (No credit for other methods).

Solution: (a) By the Residue Theorem.

(b) Assume that

$$|f(z)| \leq M$$
 on \mathbb{C} .

Then

$$\left|\int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz\right| \leq \frac{2\pi MR}{(R-|\alpha|)(R-|\beta|)} \to 0 \text{ as } R \to \infty.$$

(c) Combining (a) and (b), we get

$$f(\alpha) = f(\beta),$$

so f is constant.

7. (10 points) Let

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

be an analytic function and

$$F: (x,y) \mapsto (u(x,y), v(v,y)).$$

(a) Show that

$$\det J_F(x,y) = |f'(z)|^2,$$

where $J_F(x, y)$ represents the Jacobian matrix of *F* at (x, y).

(b) Show that if f'(z) = 0, then $J_F(x, y) = 0$.

Solution: (a) Using CR equations, we have

$$\det J_F(x,y) = u_x v_y - v_x u_y = u_x^2 + v_x^2 = |f'(z)|^2.$$

(b) If f'(z) = 0, then

 $u_x = v_x = 0.$

Hence according to CR-equations, we obtain

$$v_y = u_x = 0, \quad u_y = -v_x = 0.$$

Therefore

$$J_F(x,y) = 0$$