King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables Comprehensive Exam – Term 231 Solution

1. (20 points)

Let $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$ be the upper half plane. Prove the following

- (a) If $\alpha \notin H$ and $\beta \in H$, then $\frac{1}{\alpha \beta} \in H$.
- (b) For any $\xi_1, \ldots \xi_k \in H$, $\xi_1 + \ldots + \xi_k \in H$, in particular, $\xi_1 + \ldots + \xi_k \neq 0$.
- (c) Let P be a polynomial with zeros z_1, \ldots, z_k (possibly repeated)

$$
\frac{P'(z)}{P(z)} = \frac{1}{z - z_1} + \ldots + \frac{1}{z - z_k}.
$$

(d) Using the previous questions, prove the following: " Let P be a polynomial. Suppose all the zeros of P lie in H . Then all the zeros of P' also lie in H'' .

Solution: (a) By assumption, we have

Im
$$
\beta > 0
$$
 and Im $\alpha \leq 0$.

$$
\frac{1}{\alpha - \beta} = \frac{\overline{\alpha} - \overline{\beta}}{|\alpha - \beta|^2}
$$

Thus

$$
\operatorname{Im} \frac{1}{\alpha - \beta} = \frac{\operatorname{Im} \beta - \operatorname{Im} \alpha}{|\alpha - \beta|^2} > 0
$$

(b) $\text{Im}(\xi_1 + \ldots, \xi_k) = \text{Im}(\xi_1) \ldots + \text{Im}(\xi_k).$

(c) Write

$$
P(z) = C(z - z_1) \dots (z - z_k)
$$

$$
P'(z) = C(z-z_2)\dots(z-z_k) + C(z-z_1)(z-z_3)\dots(z-z_k) + \dots C(z-z_1)\dots(z-z_{k-1}).
$$

Hence

$$
\frac{P'(z)}{P(z)} = \frac{1}{z - z_1} + \ldots + \frac{1}{z - z_k}.
$$

(d) Assume there exists w, a zero of P' and $w \notin H$. Then

$$
\frac{P'(w)}{P(w)} = 0.
$$

By (c), we get

$$
\frac{1}{w - z_1} + \ldots + \frac{1}{w - z_k} = 0
$$

We get a contradiction as for $i \in [[1..k]],$ we have

$$
\frac{1}{w-z_i} \in H.
$$

2. (15 points)

Let f be an analytic function on $\Omega = \{z \in \mathbb{C} : |z| < 4\}$. Suppose that $|f(z)| < 1$ on Ω . Let

$$
g(z) = f(z) + z - 2.
$$

- (a) Prove that all the zeros of g lie in the disc $D = \{z \in \mathbb{C} : |z 2| < 1\}.$
- (b) Using Rouché theorem, prove that g has only one zero inside Ω .
- (c) What is g if $\Omega = \mathbb{C}$?

Solution: (a) Let z_0 be a zero of g, then

$$
z_0 - 2 = -f(z_0).
$$

Thus $|z_0 - 2| = |f(z_0)| < 1$.

(b) Let $h(z) = z - 2$, trivially we have $|h(z)| = 1$ on ∂D . Moreover

$$
|g(z) - h(z)| = |f(z)| < |h(z)|, \text{ on } \partial D.
$$

Thus, by Rouché theorem g has only one zero inside the disc D . Since all the zeros of g are located inside D, we deduce that g has only one zero inside Ω .

(c) If $\Omega = \mathbb{C}$, by Liouville theorem, f is constant and $g(z) = z + C$, with $C \in \mathbb{C}$.

3. (10 points) Evaluate

$$
\int_0^{2\pi} \frac{\cos^2 \theta}{5 + 3\sin \theta} d\theta.
$$

Solution: Let $z = e^{i\theta}$. Then

$$
\cos \theta = \frac{z + \frac{1}{z}}{2}, \quad \sin \theta = \frac{z - \frac{1}{z}}{2i}, \quad d\theta = \frac{dz}{iz}.
$$

Hence

$$
I = \int_0^{2\pi} \frac{\cos^2 \theta}{5 + 3\sin \theta} d\theta = \frac{1}{2} \int_{|z|=1} \frac{z^4 + 2z^2 + 1}{z^2(3z + i)(z + 3i)} dz = \pi i (Res(f, i) + Res(f, -i/3)),
$$

where

$$
f(z) = \frac{z^4 + 2z^2 + 1}{z^2(3z + i)(z + 3i)}.
$$

Thus

$$
I = \pi i \left(-\frac{10i}{9} + \frac{8i}{9}\right) = \frac{2\pi}{9}.
$$

4. (10 points) Let Ω be a bounded domain in the complex plane. Suppose that f is continuous on $\overline{\Omega}$ and analytic on Ω . Assume $|f(z)| = 1$ for all $z \in \partial \Omega$, the boundary of Ω .

Show that *f* is a constant function or *f* has a zero on Ω .

Solution: Assume that f has no zeros in Ω . Then by the maximum and the minimum principle (as f has no zeros), $|f(z)|$ attains its maximum and its minimum on ∂Ω. Hence

 $|f| = 1$ on $\overline{\Omega}$.

Thus *f* is constant on Ω .

- 5. (20 points) Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function such that $\lim_{|z| \to \infty} |f(z)| = +\infty$.
	- (a) Prove that f has a finite number of zeros in \mathbb{C} .
	- (b) Prove that there exists a polynomial P such that $f =$ P $\frac{1}{g}$, where g is holomorphic in $\mathbb C$ and $g(z) \neq 0$, for all $z \in \mathbb C$.
	- (c) Prove that there exists $R > 0$ such that $|g(z)| \leq |P(z)|$, for all $|z| \geq R$ and that g is a polynomial.
	- (d) Deduce that there exists a constant c such that $f = cP$.

Solution: (a) By assumption, there exists $R > 0$ such that

$$
|f(z)| \ge 1 \text{ if } |z| > R.
$$

Hence all the zeros are inside the closed disc $\overline{D}(0, R)$. As the zeros of f are isolated, a compact set contains only a finite number. Therefore, f has a finite number of zeros.

(b) Let a_1, \ldots, a_k be the zeros of f then

$$
f(z)=(z-a_1)\dots(z-a_k)h(z)
$$

where h is a non-vanishing entire function. Put

$$
P(z) = (z - a1) \dots (z - ak),
$$

$$
g(z) = \frac{1}{h(z)}.
$$

(c) Let R be chosen in (a). Then

$$
1 < |f(z)| = \frac{|P(z)|}{|g(z)|}.
$$

Hence

$$
|g(z)| \le |P(z)| \text{ for } |z| > R.
$$

As *P* is a polynomial of degree *k*, then there exists $R_1 > 0$ such that

$$
|P(z)| \leq C|z|^k \text{ if } |z| > R_1.
$$

Thus for $|z|$ large, we have

 $|g(z)| \leq C |z|^k$.

For all $n \geq 0$

$$
g^{(n)}(0) = \frac{n!}{2\pi i} \int_{|z|=r} \frac{g(z)}{z^{n+1}} dz
$$

$$
|g^{(n)}(0)| \le \frac{Cn!}{r^{n-k}} \to 0 \text{ as } r \to \infty, \text{ if } n \ge k+1.
$$

Therefore *g* is a polynomial of degree $\leq k$.

(d) If g is a non constant polynomial, then g has a zero by the fundamental theorem of algebra. Since g is a non vanishing entire function, we conclude that g is constant.

- 6. (15 points) Let f be an analytic function on \mathbb{C} .
	- (a) Prove that for any $\alpha, \beta \in \mathbb{C}$, with $\alpha \neq \beta$, we have for $R > \max(|\alpha|, |\beta|)$

$$
\frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = \frac{f(\alpha)-f(\beta)}{\alpha-\beta}
$$

(b) Show if f is bounded, then

$$
\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = 0.
$$

(c) Using ONLY (a) and (b), show that if f is analytic and bounded on $\mathbb C$, then f is constant. (No credit for other methods).

Solution: (a) By the Residue Theorem.

(b) Assume that

$$
|f(z)| \leq M \text{ on } \mathbb{C}.
$$

Then

$$
\left| \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz \right| \le \frac{2\pi MR}{(R-|\alpha|)(R-|\beta|)} \to 0 \text{ as } R \to \infty.
$$

(c) Combining (a) and (b), we get

$$
f(\alpha) = f(\beta),
$$

so f is constant.

7. (10 points) Let

$$
f(z) = f(x + iy) = u(x, y) + iv(x, y)
$$

be an analytic function and

$$
F: (x, y) \mapsto (u(x, y), v(v, y)).
$$

(a) Show that

$$
\det J_F(x, y) = |f'(z)|^2,
$$

where $J_F(x, y)$ represents the Jacobian matrix of F at (x, y) .

(b) Show that if $f'(z) = 0$, then $J_F(x, y) = 0$.

Solution: (a) Using CR equations, we have

$$
\det J_F(x, y) = u_x v_y - v_x u_y = u_x^2 + v_x^2 = |f'(z)|^2.
$$

(b) If $f'(z) = 0$, then

 $u_x = v_x = 0.$

Hence according to CR-equations, we obtain

$$
v_y = u_x = 0, \quad u_y = -v_x = 0.
$$

Therefore

$$
J_F(x,y) = 0
$$