King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables Comprehensive Exam – Term 232

Name:

ID:

Time Duration: 3 hrs.

Number of Questions: 7.

3 empty sheets of paper are added for your own sake.

Justify your answers thoroughly. Any theorem that you use must be quoted correctly.

- 1. Characterize an analytic function f on $\mathbb{C} \setminus \{0\}$ such that
 - *f* has a pole of order 2 at 0.
 - $\lim_{z\to\infty} f(z) = \infty.$

Set Since f has a pole of order 2,
$$g^{(2)} = z^2 f^{(2)}$$

thas a removable singularity of 0. & lim $g^{(2)}$ to
 $=$) we can regard g as an entire ftm.
Since $\lim_{z \to 0} g^{(2)} = 0$, $g^{(3)} = polynomial$.
The deg $g \leq 2$, then $\lim_{z \to 0} f^{(2)} = \lim_{z \to 0} \frac{g^{(2)}}{z^2} < \infty$
 $=$) g is a polynomial of deg ≥ 3
 $=$) $f^{(2)} = \frac{g^{(2)}}{z^2}$, where g is a poly. of deg ≥ 3
 $\downarrow = g^{(2)} = \frac{g^{(2)}}{z^2}$, where g is a poly. of deg ≥ 3
 $\downarrow = g^{(2)} = 0$.

Alternative answer: Since
$$f$$
 has a pole of order 2 ato,
 $f(z) = \sum_{m=-2}^{\infty} \alpha_m z^m$, $\alpha_{-2} \pm 0$.
Lef $g(z) = f(\frac{1}{z})$. Then $g(z) = \sum_{m=-2}^{10} \alpha_m z^{-m}$
Since $\lim_{z \to 0} g(z) = \infty$, O is also a pole of g .
 $\Rightarrow \alpha_m = 0$ if $m \geq N$ for some $N \geq 0$

2. Evaluate the real improper integral

$$\int_0^\infty \frac{\log x}{(1+x^2)^2} \, dx,$$

where \log means the natural logarithmic function.

Let
$$f(z) = \frac{\log z}{(1+z^2)^2}$$
 where $\log z$ is the brouch of $\log z$
sit. $\log z = \ln |z| + i \arg z$, $-\frac{\pi}{2} \langle \arg z \langle \frac{3\pi}{2} \rangle$. Consider
 T

$$Cr
$$K$$
Grave f has only one sing, at $z = \bar{x}$, which is a pole
of order λ ,
 $\int_{P} f(z) dz = 2\pi \pi \operatorname{Res}(f; \bar{z}) = \frac{d}{dz} |_{z=\bar{z}} \left(\frac{\log z}{\sqrt{(2+\bar{z})^2}} \right) \cdot 2\pi i$

$$= -\frac{\pi}{2} + i \frac{\pi^2}{4} - 12$$$$

$$\int_{x}^{-r} f(x) dx = \int_{-r}^{r} \frac{l_{q}(x) + i\pi}{(1 + \chi^{2})^{2}} dx$$

$$= \int_{r}^{r} \frac{l_{q}(x) + i\pi}{(1 + \chi^{2})^{2}} dx$$

$$\Rightarrow I + i\pi \int_{0}^{\infty} \frac{dx}{(1 + \chi^{2})^{2}} dx + i\pi \int_{0}^{\infty} \frac{dx}{(1 + \chi^{2})^{2}} dx$$

$$\Rightarrow \int_{P} f(x) dx \Rightarrow 2I + i\pi \int_{0}^{\infty} \frac{dx}{(1 + \chi^{2})^{2}} - (2)$$
From (1) $f(x)$, taking the real part,
$$\left(I = -\frac{\pi}{q}\right)$$

- 3. Let $\Omega = \{z \in \mathbb{C} : \operatorname{Im} z > -1\}.$
 - (a) Find a Möbius transform which maps Ω onto the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}.$
 - (b) Show that any analytic function $f : \Delta \setminus \{0\} \to \Omega$ has a removable singularity at 0.

(a)
$$M(z) = \frac{z}{z+2i}$$
 can be an answer:
(b) $M \circ f$; $\leq 140j \Rightarrow \leq analytic$
i.e. $M \circ f$ is $bdd \Rightarrow 0$ is removable
 $\circ f M \circ f \Rightarrow 0$ is removable for f . \Box

- 4. Let Δ be the unit disc in \mathbb{C} .
 - (a) Show that for any $a \in \Delta$ and $c \in \mathbb{C}$ with |c| = 1,

$$\varphi(z) = c \frac{z-a}{1-\bar{a}z}$$

is an automorphsm of Δ .

- (b) Suppose $f \in Aut(\Delta)$ such that f(0) = 0. Show that f(z) = cz for all $z \in \Delta$, for some $c \in \mathbb{C}$ with |c| = 1.
- (c) Using (a) and (b), show that

$$\operatorname{Aut}(\Delta) = \left\{ c \frac{z-a}{1-\bar{a}z} : a \in \Delta, \ c \in \mathbb{C}, \ |c| = 1 \right\}.$$

(a) Since
$$Q(z)$$
 is a Möbius trahsform and $Q(a)=o \in \Delta$,
we only need to show $|Q(z)|=1$ if $|z|=1$.

If $|z|=1$, then $\overline{z} = 1/2$, therefore
 $|Q(z)| = \frac{|\overline{z}-\overline{\alpha}|}{|1-\overline{\alpha}\overline{z}|} = \frac{|\overline{z}||1-\overline{\alpha}\overline{z}|}{|1-\overline{\alpha}\overline{z}|} = \frac{|\overline{\omega}|}{|1-\overline{\alpha}\overline{z}|} = \frac{|\overline{\omega}|}{|\overline{\omega}|} = 1$
where $w = 1-\overline{\alpha}\overline{z}$.

(b) Applying the schwarz lemma to both
$$f$$
 and f^{-1} ,
we conclude that $|f'(o)| = 1$. Then the
schwarz lemma also implies that $f(z) = CZ$
for some $C \in C$, $|C| = 1$.

(c) Let $f \in Aut(a) \land let f(a) = a$. Let $\ell(a) = \frac{z-a}{1-az}$. Then $\ell(a) = a \Rightarrow \ell^{-1}(a) = a$. $\Rightarrow f \circ \varphi^{-1} \in Aut(a)$ Page 5 s.t. $f \circ \varphi^{-1}(a) = 0$. $\Rightarrow f \circ \varphi^{-1}(z) = (z \Rightarrow f(z) = c \varphi(z))$ (b) $f \circ \varphi h e c \in \varphi$, |c| = 1.

- 5. Let $f(z) = z^7 5z^5 + 7$. Prove that *f* has
 - (a) 5 zeros in $A_1 = \{z \in \mathbb{C} : 1 < |z| < 2\}.$
 - (b) 2 zeros in $A_2 = \{z \in \mathbb{C} : 2 < |z| < 3\}.$

T

- 6. Let *U* be a domain in \mathbb{C} and $f : U \to \mathbb{C}$ an analytc function. Let $z_0 \in U$.
 - (a) Prove if $f'(z_0) = 0$, then *f* is NOT 1-1 on $B(z_0; r)$ for any r > 0 such that $B(z_0; r) \subset U$, where $B(z_0; r) = \{z \in \mathbb{C} : |z z_0| < r\}$.
 - (b) Prove that if $f'(z_0) \neq 0$, then f is 1-1 on $B(z_0; r)$ for sufficiently small r > 0 and for $w \in f(B(z_0; r))$,

$$f^{-1}(w) = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{zf'(z)}{f(z) - w} dz$$

(a) Lef S= f(U) & let G = { | 2 - 3 | = r] Let So be the connected component of SNFEC) Containing Wo = flo). Then & WE SLO, The number of 2005 of f(2) - w = index of f(C) around w 11 200 \square = The number of zeros of f(z)-wo 22 > f is not 1-1 If f'(2) =0, then fis 1-1 in a mbd. of 28 (b) by the Inverse function theorem. Suppose 1>0 is chosen +hot fis 1-1 on a mbd. of B(3,1) & let we f(B(23,7)). Let 3 be the unique zero of f ()-w in B(20,r); i.e. 3 = f-1(w). Then f(z)-W= (Z-3) g(z) where g(z) to on T3(2,1). Page 7

 $= \frac{1}{2\pi i} \int_{|z-z_0|=r}^{z} \frac{f'(z)}{f(z)-w} dz$ $= \frac{1}{2\pi i} \int_{12-31=r}^{2} \frac{z}{g(2)} + \frac{z}{z-3} dz$ $= 3 = f^{-1}(w)$ since <u>zg(z)</u> is analytiz on a nod. of TS(zr). g(z)

7. For a compact set K in \mathbb{C} , let

 $\widehat{K} = \{ z \in \mathbb{C} : |f(z)| \le \max_{w \in K} |f(w)| \text{ for all entire function } f \}.$

A domain U in \mathbb{C} is said to be *polynomially convex* if $\widehat{K} \subset U$ whenever K is a compact subset of U. Prove that the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$ is NOT polynomially convex. (Hint. Let $K = \{z \in \mathbb{C} : |z| = 3/2\}$. What is \widehat{K} ?)