King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables Comprehensive Exam – Term 232

Name: ID:

Time Duration: 3 hrs.

Number of Questions: 7.

3 empty sheets of paper are added for your own sake.

Justify your answers thoroughly. Any theorem that you use must be quoted correctly.

- 1. Characterize an analytic function f on $\mathbb{C}\setminus\{0\}$ such that
	- $\bullet\;$ f has a pole of order 2 at $0.$
	- $\lim_{z\to\infty} f(z) = \infty$.

Sik	Since f has a pole of order 2, $\theta^{(2)} = 2^2 f(2)$
Thus a removable singularity at 0. $\lambda \ln \theta^{(2)} \neq 0$	
Thus a renewal of as an entire $(4n)$.	
Since $\lim_{z \to \infty} \theta^{(2)} \equiv \theta_0$, $\theta^{(3)}$ a polynomial.	
Thus $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$	
Thus $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$	
Thus $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$	
Thus $\theta = \frac{1}{2} \Rightarrow \theta = \frac{1}{2} \Rightarrow \theta$, $\theta = \frac{1}{2} \Rightarrow \theta$	
Thus $\theta = \frac{1}{2} \Rightarrow \theta = \frac{1}{2$	

\nAlternative
$$
0.5e^{2x} + 0.5e^{2x} + 0.4e^{2x} + 0.4e^{2x} + 0.4e^{2x} = 1.4e^{2x} + 0.4e^{2x} = 1.4e^{2x
$$

Page 2
\n
$$
\Rightarrow f(a) = \frac{a_{-2}}{z^{2}} + \frac{a_{-1}}{z} + \frac{y}{2a_{-2}}a_{w}z^{n} = \frac{a_{-2}}{z^{2}} + \frac{a_{-1}}{z} + p(z)
$$
\n
$$
w_{\text{here}} p_{\text{B}} a p_{\text{dy nonial.}} (a_{-2} \pm 0)
$$

2. Evaluate the real improper integral

$$
\int_0^\infty \frac{\log x}{(1+x^2)^2} \, dx,
$$

where log means the natural logarithmic function.

Let
$$
f(z) = \frac{\log z}{(1 + z^2)^2}
$$
 where $\log z$ is the branch of $\log z$
\n5.1. $\log z = \log |z| + i \log z$ = $\frac{3}{2} \cdot \log z < \frac{3}{2}$. $\cos z \le 1$
\n
\n7
\n $\frac{c_1}{c_2}$
\n9. $\frac{1}{c_1} \cdot \log z = \log z$ or $\frac{1}{c_1} \cdot \log z$
\n10. $\log z = \log z$ and $\log z = \log z$ and $\frac{1}{z} = \log z$ and $\frac{1}{z} = \log z$
\n11. $\log z = \log z$ and $\log z = \frac{1}{z}$ and $\frac{1}{z} = \log z$ and $\frac{1}{z} = \frac{1}{z}$
\n12. $\log z = \frac{1}{z} + \log z$ (13)

$$
|\int_{c_{R}} f(z) dz| \leq \frac{\log R + \pi}{(R^{2} - 1)} \cdot 2\pi R \to 0 \text{ as } R \to \infty
$$

$$
|\int_{c_{f}} f(z) dz| \leq \frac{\log R}{(1-r^{2})^{2}} \cdot 2\pi r \to 0 \text{ as } r \to \infty
$$

$$
\int_{r}^{R} f(z) dz \to \int_{0}^{\infty} \frac{\log \log x}{(1+x^{2})^{2}} dx =:I
$$

Page 3

$$
\int_{-R}^{R} f(x) dx = \int_{-R}^{-T} \frac{\log_{2}(x) + \lambda x}{(1 + \lambda^{2})^{2}} dx
$$
\n
$$
= \int_{R}^{R} \frac{\log_{4} x + \lambda^{2} x}{(\lambda + \lambda^{2})^{2}} dx
$$
\n
$$
\Rightarrow \sum_{1} x + \lambda x \int_{0}^{\infty} \frac{dx}{(1 + \lambda^{2})^{2}} dx
$$
\n
$$
\Rightarrow \int_{P} f(x) dx \Rightarrow 2x + \lambda x \int_{0}^{\infty} \frac{dx}{(1 + \lambda^{2})^{2}} \qquad (2)
$$
\n
$$
\Rightarrow \int_{P} f(x) dx \Rightarrow 2x + \lambda x \int_{0}^{\infty} \frac{dx}{(1 + \lambda^{2})^{2}} \qquad (2)
$$
\n
$$
\boxed{\sum_{1} x = -\frac{\pi}{4}}
$$

- 3. Let $\Omega = \{z \in \mathbb{C} : \text{Im } z > -1\}.$
	- (a) Find a Möbius transform which maps Ω onto the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}.$
	- (b) Show that any analytic function $f:\Delta\setminus\{0\}\to\Omega$ has a removable singularity at $0.$

(a)
$$
M(4) = \frac{z}{z+2i}
$$
 can be an answer.
\n(b) $M \circ f : \triangle \setminus \{0\} \Rightarrow \triangle$ analytic
\ni.e. $M \circ f : s \text{ bad } \Rightarrow 0 \text{ B removable}$
\n $\circ f M \circ f \Rightarrow \circ g \text{ removable} \text{ for } f. \square$

- 4. Let Δ be the unit disc in \mathbb{C} .
	- (a) Show that for any $a \in \Delta$ and $c \in \mathbb{C}$ with $|c| = 1$,

$$
\varphi(z) = c \frac{z - a}{1 - \bar{a}z}
$$

is an automorphsm of Δ .

- (b) Suppose $f \in Aut(\Delta)$ such that $f(0) = 0$. Show that $f(z) = cz$ for all $z \in \Delta$, for some $c \in \mathbb{C}$ with $|c| = 1$.
- (c) Using (a) and (b), show that

$$
Aut(\Delta) = \left\{ c \frac{z - a}{1 - \bar{a}z} : a \in \Delta, \ c \in \mathbb{C}, \ |c| = 1 \right\}.
$$

(a) Since
$$
Q(z)
$$
 is a M5 bits transform and $Q(a)=o\in\Delta$,

\nwe only need the slope $|Q(3)|=1$ if $|z|=1$.

\nIf $|z|=1$, then $\overline{z} = 1/z$, there are $|Q(2)| = 1$ for $|z|=1$.

\n $|Q(2)| = \frac{|z-a|}{|1-\overline{a}z|} = \frac{|z|}{|1-\overline{a}z|} = \frac{|1-\overline{a}z|}{|1-\overline{a}z|} = \frac{|0|}{|1-\overline{a}z|} = 1$

\nwhere $W=1-\overline{a}z$.

(b) Applying the Schwarz Lemma *to both*
$$
f
$$
 and f^{-1}
we conclude that $|f'(0)| = 1$. Then the
Subwarz lemma also implies that $f(2) = C$ 2
for some CE C , $|C| = 1$.

(c) Let $f \in Aut(\triangle)$ & let $f(a) = 0$. Let $\ell(a) = \frac{z-a}{1-\bar{a}z}$. Then $\varphi(a) = 0 \Rightarrow \varphi^{-1}(0) = \alpha$. \Rightarrow $f \circ \varphi^{-1}$ EAut() $94.1. 99429 = 0 \Rightarrow 12.9412 = 0$
Page 5
 $94.1. 99420 = 0.$ $\Rightarrow 999420 = 0.9$
Page 5
 $99420 = 0.9$
Page 5
 $99420 = 0.9$
Page 12.9

- 5. Let $f(z) = z^7 5z^5 + 7$. Prove that f has
- (a) 5 zeros in $A_1 = \{z \in \mathbb{C} : 1 < |z| < 2\}.$
- (b) 2 zeros in $A_2 = \{z \in \mathbb{C} : 2 < |z| < 3\}.$

Τ

(i) Let
$$
g_1(a) = \frac{1}{7}
$$
, $h_1(a) = \frac{1}{7} - 5\frac{1}{2}$
\nThen on 12-1, | $g_1(a) = 7 > 6 > 1$ ln(2)
\n \Rightarrow $\int 4$ and $g_1 + l_1$ have *same number of zeros*
\n \therefore inside 12-1, both: is 0
\n(i) Let $g_2(a) = -52^5$, $h_2(a) = \frac{1}{2} + 7$
\nOn 12-1, $1g_2(a) = 6 \cdot 2^5 = 160$
\n $|-h_2(a)| \le 2^5 + 7 = 135$
\n \Rightarrow On 12-1 $|g_2(a)| > 1$ ln(2)
\n \Rightarrow $g_2 \ge 1$ ln₂(2) > 1ln(2)
\n $\Rightarrow g_3 \ge 1$ ln $\frac{1}{2} = 2$ ln₂(2) > 1ln(2)
\n $\Rightarrow g_3 \ge 1$ ln $\frac{1}{2} = 1$ ln₂(2) > 1ln(2)
\n $\Rightarrow g_3 \ge 1$ ln $\frac{1}{2} = 1$ ln₂(2) > 1ln(2)
\n $\Rightarrow g_3 \ge 1$ ln $\frac{1}{2} = 1$ ln₂(2) > 1ln(2)
\n $\Rightarrow g_3 \ge 1$ ln $\frac{1}{2} = 1$ ln₂(2) $\frac{1}{2} = 1$ ln₂(2) = -52⁵+7
\n \Rightarrow 1ln₂ ln $\frac{1}{2} = 1$ ln₂ ln $\frac{1}{2$

6. Let *U* be a domain in $\mathbb C$ and $f: U \to \mathbb C$ an analyte function. Let $z_0 \in U$.

- (a) Prove if $f'(z_0) = 0$, then f is NOT 1-1 on $B(z_0; r)$ for any $r > 0$ such that $\overline{B(z_0; r)} \subset$ *U*, where $B(z_0; r) = \{z \in \mathbb{C} : |z - z_0| < r\}.$
- (b) Prove that if $f'(z_0) \neq 0$, then f is 1-1 on $B(z_0; r)$ for sufficiently small $r > 0$ and for $w \in f(B(z_0; r)),$ $\begin{array}{ccc} 1 & f & \sim \end{array}$

$$
f^{-1}(w) = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{zf'(z)}{f(z)-w} dz.
$$

 (4) Lef $\Omega = f(U)$ & let $G = \{12-31 = r\}$ Let Sto be the connected un ponent of SLIFEC) Containing $w_{0} = f(z)$. Then f $w \in \Omega$ o, The number of Zeros of $f(z)$ - w $=$ index of $f(C)$ around W U_1 W_0 \equiv = The number of zeros of $f(z)-w_0 \ge 2$ \Rightarrow f is not 1-1 (b) If $f'(3) \neq 0$, then $f(3)$ 1-1 in a nod. 73 by the Inverse function theorem. Suppose $r > 0$ is chosen +hot f is $1-1$ on a nbd g $B(G,r)$ 2 let Les f (B(3, m). Let 3 be the unique zero of $f(c) - w$ in $B(G,r)$, i.e. $3 = f^{-1}(w)$. Then $f(z)-D= (z-3)g(z)$ where $g(z) \neq 0$ on $\overline{f}(z,-1)$.

 $\Rightarrow \frac{1}{2\pi i} \int_{|z-z_2| = r} \frac{z f'(z)}{f(z) - w} dz$ $\frac{1}{z} \frac{1}{27i} \int_{|z-z|=r} \frac{2 \frac{1}{2}(2)}{2(2-z)} + \frac{2}{z-3} dz$ $= 3 = f^{-1}(w)$ $\frac{29(2)}{9(2)}$ is analytiz on a nbd. of $\sqrt{380}$.

7. For a compact set K in \mathbb{C} , let

 $\widehat{K} = \{z \in \mathbb{C} : |f(z)| \leq \max\limits_{w \in K} |f(w)| \text{ for all entire function } f\}.$

A domain U in $\mathbb C$ is said to be *polynomially convex* if $\widehat K \subset U$ whenever K is a compact subset of U. Prove that the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$ is NOT polynomially convex. (Hint. Let $K = \{z \in \mathbb{C} : |z| = 3/2\}$. What is \widehat{K} ?)