King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics Comprehensive Exam: Linear Algebra (211) Duration : 3 Hours

Solve the following questions (show full details).

Exercise 1 (20 points: 5-5-5-5) Let T be the linear operator on \mathbb{R}^3 defined by T(x, y, z) = (x, x + y, x + z).

(1) Find the matrix $[T]_S$ representing T in the standard basis S of \mathbb{R}^3 .

(2) Find the matrix $[T]_B$ representing T in the ordered basis $B = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 .

(3) Find the characterestic and minimal polynomials of T.

(4) Show that T is invertible and find T^{-1} (express T^{-1} explicitly).

Exercise 2 (20 points: 5-5-5-5) Let A and B be $n \times n$ complex matrices.

(1) Show that AB and BA have the same nonzero eigenvalues.

(2) Assume that AB = 0. Show that $rank(A) + rank(B) \le n$.

Assume that $A^s = I$ for some positive integer s and let J be the Jordan normal form of A.

- (a) Show that $J^s = I$.
- (b) Show that A is diagonalizable.

Exercise 3 (20 points:5-5-5-5) Let V be an n-dimensional vector space over the real field \mathbb{R} with a positive definite scalar product (|) and let T be a linear operator on V such that $T^2 = T$ and $TT^t = T^tT$, where T^t is the transpose of T.

(1) Prove that $V = ker(T) \bigoplus Im(T)$.

(2) Prove that $ker(T) = ker(T^t)$.

(3) Prove that for every $v \in V$, v = w + T(u) where $w \in ker(T)$, $||T(v)||^2 = ||T(u)||^2 = (T(v)|T^t(v))$.

(4) Prove that $T = T^t$.

Exercise 4 (20 points)

Find all possible rational forms and their respective Jordan forms of a matrix with characteristic polynomial $(x-1)^3 (x-2)^4$ and minimal polynomial $(x-1)^2 (x-2)^2$.

Exercise 5 (20 points: 5-5-5-5)

Let V be a finite dimensional inner product space over a field K and T a self adjoint linear operator on V.

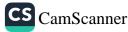
(1) Prove that each eigenvalue of T is real.

(2) Prove that the eigenvectors of T associated with distinct eigenvalues are orthogonal.

(3) Assume that $K = \mathbb{R}$ and let A be a linear on V such that (Av|v) = 0 for all $v \in V$. Prove that $A + A^t = 0$ and if A is symmetric, then A = 0.

(4) Find a linear operator A such that (Av|v) = 0 for all $v \in V$ but $A \neq 0$.

Exercise 2: A and B complex matrices (nxn) -2-(1) AB and BA have the Same eigenvalues. Let λ be an eigen value of AB. Then Let (AB- λI)=0 If λ=0, then det (BA) = det (AB) = 0 and So $\lambda = 0$ is an eigenvalue of BA. · Assume that $\lambda \neq 0$ hat $0 \neq V$ such that ABV= XV. Necessarily BV = 0. For if not, BV=0 implies that $\lambda V = ABV = A.0z0$ and for $\lambda = 0$ or V = 0, which is absend. Hence BUZO. Now set w= BUZ We have. ABV= 2V => AW=2V $\exists BAW = \lambda BV = \lambda W$ So Ais an eigenvalue of BA, and with associated eigenvector. 2 ASSume that ABZO. Show that rank(A)+rank(B) < n Nullity Formula: Nullity (M) + rank (H) = dim V · Now AB=0 → Column Space (B) ⊆ Null Space (A) So dim(column space (B)) < dim (Null space (A)), that is, rank (B) < Nullity (A). Therefore: [rank(A)+rank(B) < rank(A)+ Nullity(A)=n. 3 A=I (for some A≥1), Jits Jordan Form: @ There exists an invertible matux Q Auch that J= QAQ. By induction on m>1, J= QAMQ. Inparticular, J= QAQ=QIQZI.



3 6) Show-that Ais diaponalizable. · Method 1 A is a Complex matrix and AZI then its minimal polynomial PA(X) divides X-1in C(X) that is, the worts of PA(X) are simple (as nots of the unity herefore A is diagonalizable. Method 2: Let Zy, , Zr be the distinct eigenvalues of A. The Jordan fam is formed by r blocks $J = \left(\begin{array}{c} J_{1} \\ J_{2} \\ \hline \\ J_{2} \\ \hline \\ \\ J_{r} \end{array} \right) J_{i} Jordan Llock associated to \lambda_{i}$ As JZI, this means JZI for each i. W/e reduced the proof to the case of one block Jand associated to a J=I. Write J= XI+N, N Nilpokent. $I = J^{A} = (\lambda I + N)^{\lambda} = \sum_{k=0}^{A} {\binom{A}{k}} \frac{N}{\lambda N^{A-k}} = (bij)$ and this shows that birrizo Vi. thus J= XI is dugine Exercise 3: dim V=n, (1) positive definite scalar product.

T linear operator on V.S.t. TZ Tand TT= TT. 1) Prove that V=KerT () ImT. Let REV. Winte R=(2-T2)+T2. Clearly TRE IMT. NOW T(2-T2)2 T2-T22T2-T220 So &- TREKERT. Thus V=KerT+ImT.

Now, let
$$\chi \in \operatorname{Kur} T(\Lambda \operatorname{In} T \operatorname{Ibn})$$

 $T_{\chi=0}$ and $\chi_{2} \operatorname{Ty}$ for some $y \in V$.
So $0 = T_{\chi} = T_{\chi}^{2} = T_{\chi}^{2} \chi$. Thus $\operatorname{Ku}(T) \operatorname{Im} T_{2} O$
and Through $V = \operatorname{Ku}(T)$.
(2) Prove that $\operatorname{Kur}(T) = \operatorname{Kur}(T^{\dagger})$.
For every $V \in V_{1}$ we have: $(T^{\dagger}v)^{\dagger}T^{\dagger}v) = (V^{\dagger}|T^{\dagger}v)$
So $||T^{\dagger}v||^{2} = (T^{\dagger}v|T^{\dagger}v) = (V^{\dagger}|T^{\dagger}v) = (V^{\dagger}|T^{\dagger}v)$
 $= (V^{\dagger}|T^{\dagger}Tv) = (V^{\dagger}|T^{\dagger}v) = (V^{\dagger}|T^{\dagger}v)^{2}$.
Therefore $||T^{\dagger}v| = ||Tv||$.
So $\chi \in \operatorname{Kur} T \Leftrightarrow T_{\chi=0} \Leftrightarrow ||T\chi|| = 0 \Leftrightarrow ||T\chi|| = 0$
 $\Leftrightarrow T^{\dagger}\chi_{20}$
Hence $\operatorname{Kur} T = \operatorname{Ker} T^{\dagger}$.
(3) Prove that $V = V_{1}$ be $\omega + T(\omega)$, we the T_{1} is $U_{2} \circ U = T^{\dagger}u$.
 $\Leftrightarrow \chi \in \operatorname{Kur} T$.
Hence $\operatorname{Kur} T = \operatorname{Ker} T^{\dagger}$.
 $\Leftrightarrow \chi \in \operatorname{Kur} T$.
 $\operatorname{Kur} T = \operatorname{Ker} T^{\dagger}$. So $\operatorname{Tw} = \operatorname{Tw} = O$.
Now $V = \omega + Tu \Rightarrow Tv = T\omega = Tu = O$.
Now $V = \omega + Tu \Rightarrow Tv = T\omega + Tu = Tu = Tu$.
 $\operatorname{So} ||Tv||^{2} (Tv|T^{\dagger}v) = (T^{\dagger}v|V) = (Tv|V) = (Tu|V)$.
 $= (Tu|w+Tu) = (Tu|w) + (Tu|Tu) = (U|T^{\dagger}w) + ||Tu||^{2}$.
 $= (U(u) + ||Tu||^{2} = 0 + ||Tu||^{2} = ||Tu||^{2}$.

(4) Prove that T=T: For every
$$x_i y \in V$$
 -5.
by (3) $x = w_i + Tu_i ? y = w_2 + Tu_2 ? For i w_3 \in Fart.$
Thus: $(Tx|y) = (Tw_i + Tv_i | y)$, $T_{i=T}^{2}$
 $= (Tu_i | y) = (Tu_i | w_2 + Tu_2)$
 $= (Tu_i | w_2) + (Tu_i | Tu_2)$
 $= (U_i | Tw_2) + (Tu_i | Tu_2)$
 $= (U_i | Tw_2) = (x | Ty) = (x | Tu_2)$
 $= (U_i | Tu_2) = (x | Ty) = (x | Tu_2)$
 $= (w_i + Tu_i | Tu_2)$
 $= (w_i + Tu_i | Tu_2)$
 $= (w_i | Tu_2) + (Tu_i | Tu_2)$
 $= (m_i | Tu_2) + (Tu_i | Tu_2)$
 $= (m_i | Tu_2) + (Tu_i | Tu_2)$
 $= (Tu_i | U_2) + (Tu_i | Tu_2)$
Thus $Tx = Ttx + x \in V$ and this have $\forall x, \forall y$
Thus $Tx = Ttx + x \in V$ and Hence $Tz = Tt$.
Exercise 4: Ta linear operator with:
 $f_T(x) = (x - 1)(x - 2)^T$ and: $P_T(x) = (x - 1)(x - 2)^T$
Characterestic polynomial (minimal polynomial)
. dum V= deg $f_T(x) = T$, $P_T(x) = x^t - 6x^2 + A3x^2 + A2x + 4$

CS CamScanner

Exercise 5: dim V=n
(1) Eigenvalues of T are real Numbers.
Let
$$\lambda$$
 be an eigenvalue of T and $0 \pm V$ an eigenvector
of T and $0 \pm V$ and $0 \pm V$. Then $TV = \lambda V$.

$$(Tv | V) = (\lambda v | V) = \lambda (v | v) = \lambda ||v||^2.$$

Also $(Tv | V) = (V | T^* v) = (V | Tv) = (V | \lambda V)$

$$= \overline{\lambda} (v | v) = \overline{\lambda} ||v||^2.$$

So $\lambda ||v||^2 = \overline{\lambda} ||v||^2.$
Also $(Tv | V) = (v | T^* v) = (v | Tv) = (v | \lambda V)$

$$= \overline{\lambda} (v | v) = \overline{\lambda} ||v||^2.$$

So $\lambda ||v||^2 = \overline{\lambda} ||v||^2.$
Also $(Tv | V) = (v | T^* v) = (v | Tv) = (v | \lambda V)$

$$= \overline{\lambda} (v | v) = \overline{\lambda} ||v||^2.$$

So $\lambda ||v||^2 = \overline{\lambda} ||v||^2.$
Also $(Tv | V) = (v | T^* v) = (v | Tv) = (v | \lambda v)$

$$= \overline{\lambda} (v | v) = \overline{\lambda} ||v||^2.$$

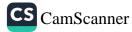
So $\lambda ||v||^2 = \lambda ||v||^2.$
Alto $(Tv | V_2) = (\lambda_1 v | v_2) = \lambda_1 (v | v_2)$

$$= \overline{\lambda}_2 (v_1 | v_2) = \lambda_2 (v_1 | v_2)$$

So $\lambda_1 (v | v_2) = \lambda_2 (v_1 | v_2) = (\lambda_1 - \lambda_2) (v_1 | \lambda_2 v_2)$

$$= \lambda_2 (v_1 | v_2) = \lambda_2 (v_1 | v_2) = \lambda_3 (v_1 | v_3)$$

So $\lambda_1 (v | v_2) = \lambda_2 (v_1 | v_3) = (\lambda_1 - \lambda_2) (v_1 | v_3) = 0$
Point $\lambda_1 \neq \lambda_2 \implies (v_1 | v_2) = \lambda_3 (v_1 | v_3) = 0$
For every $\lambda_1 \neq 0$ by hype theoris $(A(x - y) | (A - y)) = 0$
For every $\lambda_1 \neq V$ by hype theoris $(A(x - y) | (A - y)) = 0$
So $(A x - Ay | x - y) = 0$. Then $(Ax | y) - (Ax | y) - (Ay | x + Ay)$
 $(Ax | x) = (Ax | y) + (x | Ay|) = 0$ $(K = \mathbb{R} \rightarrow (Ay | x) = (x | Ay)$



8 <u>So</u> (Axly)+(2/Ay)=0 $\Rightarrow (A_{\lambda}|y) + (A^{t_{\lambda}}|y) = 0$ $\Rightarrow (Ax + A^{t}x|y) \ge 0$ \Rightarrow $((A + A^{t}) \times | y) = 0$, for ever $\lambda, y \in V$. Therefore (A+At) x20 Y xeV and So A+At=0. € If A=At, then 2A=0 and So A=0 4 Find a linear operator such that (Av/v)=0 for every v EV, but A=0 Let $V = \mathbb{R}^2$, T : V = V. $(\chi, \gamma) \longrightarrow (\gamma, -\chi)$ Clearly $[T]_{s} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T \neq 0$ Noo Y V= (x,y) E R2 V (Tv|v) = ((y,-2)|(x,y)) = yx - xy = 0Part T== Good luck .=

