King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 212) Linear Algebra (Duration = 3 hours)

Problem 1. Let $A := \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}$ on \mathbb{R} . Determine its

- (1) Characteristic polynomial *f*
- (2) Minimal polynomial *p*
- (3) Jordan form *J*
- (4) Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Show that *T* has a cyclic vector.

Problem 2. Let $A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ on \mathbb{R} . Determine its

- (1) Invariant factors p_1, \ldots, p_r
- (2) Rational form *R*
- (3) Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Find an explicit cyclic decomposition of \mathbb{R}^3 under *T*; namely, find α , $\beta \in \mathbb{R}^3$ and their respective *T*-annihilators such that $\mathbb{R}^3 = Z(\alpha, T) \oplus Z(\beta, T)$.
- **Problem 3.** (1) Let *V* be the \mathbb{R} -vector space of polynomials of degree ≤ 3 , endowed with the inner product $(f | g) = \int_{-1}^{1} f(t)g(t)dt$. Let *W* be the subspace spanned by the monomial x^2 (i.e., $W = \mathbb{R}x^2$) and *E* the orthogonal projection of *V* on *W*. Let $f = a + bx + cx^2 + dx^3 \in V$. Find E(f).
 - (2) Let *V* be the \mathbb{R} -vector space of real-valued continuous functions on the interval [-1,1], endowed with the inner product $(f | g) = \int_{-1}^{1} f(t)g(t)dt$. Find the orthogonal complement of the subspace of even functions.

Problem 4. Let *V* be a finite-dimensional vector space over \mathbb{R} and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form on *V* given by

$$f(\alpha,\beta) = L_1 \alpha \ L_2 \beta$$

(1) Show that rank(f) = 1.

Next, let $V = \mathbb{R}^3$ and let

(2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}$.

(3) Let $B := \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for *V* such that the transition matrix from *B* to *S* is

$$P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Find the matrix of f in B

(4) Is *f* non-degenerate ? (Justify)

Problem 5. Let *V* be a finite-dimensional vector space over a field *F* and *T* a linear operator on *V*. Let $p = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ be the minimal polynomial of *T*, where $r_i \ge 1$ for each *i* and p_1, p_2, \dots, p_k are distinct monic irreducible polynomials in *F*[*x*]. For each $i = 1, \dots, k$, set $W_i :=$ Nullspace $(p_i^{r_i}(T))$.

- (1) Announce the Primary Decomposition Theorem.
- (2) For each *i*, prove there exists $\alpha_i \in W_i$ such that the *T*-annihilator of α_i is equal to $p_i^{r_i}$.
- (3) Use (2) to prove there exists $\alpha \in V$ such that the *T*-annihilator of α is equal to *p*.

King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 212)

Linear Algebra (Duration = 3 hours)

KEY

Problem 1. [10]

Let $A := \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}$ on \mathbb{R} . Determine its

- (1) Characteristic polynomial *f*
- (2) Minimal polynomial *p*
- (3) Jordan form J
- (4) Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Show that *T* has a cyclic vector.

(1) •• f = det(xI - A) = (x - 1)(x - 2)(x + 2) (A is diagonalizable)

(2) •• p = f (since f and p share the same roots)

(3) •• $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ (since *A* is diagonalizable)

(There are six versions for *J* depending on the order of the characteristic values 1, 2, -2)

(4)
$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; Te_3 = 2e_1 + e_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}; T^2e_3 = 4e_1 + e_2 = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$$

- . e_3 , Te_3 , T^2e_3 Linearly Independent
- . $\mathbb{R}^3 = Z(e_3, T);$
- . •• e_3 is a cyclic vector.

Problem 2. [10]

Let
$$A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$
 on \mathbb{R} . Determine its

- (1) Invariant factors p_1, \ldots, p_r
- (2) Rational form *R*
- (3) Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Find an explicit cyclic decomposition of \mathbb{R}^3 under *T*; namely, find α , $\beta \in \mathbb{R}^3$ and their respective *T*-annihilators such that $\mathbb{R}^3 = Z(\alpha, T) \oplus Z(\beta, T)$.

(1)
$$xI - A \sim \begin{pmatrix} (x-1)(x-2) & 0 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

•• ••
$$p_1 = p = (x-1)(x-2) = x^2 - 3x + 2$$
; $p_2 = x - 1$

(2) ••
$$R = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

(3) We have a cyclic decomposition :

$$\begin{cases} \bullet \bullet & \mathbb{R}^3 = Z(e_1, T) \oplus Z(e_2 + e_3, T) \\ \bullet & \bullet & p_{e_1} = p_1 \quad ; \quad p_{e_2 + e_3} = p_2 \end{cases}$$

Indeed, first, recall that for any vector α , its *T*-annihilator $p_{\alpha} | p = (x-1)(x-2)$.

$$Te_{1} = e_{1} + e_{3} \Longrightarrow p_{e_{1}} = p_{1} \Longrightarrow \{e_{1}, Te_{1}\} \text{ basis for } Z(e_{1}, T)$$
$$\beta := e_{2} + e_{3} : T\beta = \beta \Longrightarrow p_{\beta} = p_{2} \Longrightarrow \{\beta\} \text{ basis for } Z(\beta, T)$$
$$e_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} : Te_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} : \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ Linearly Independent}$$

 $e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$; $Te_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Linearly Independent

Another cyclic decomposition : $\begin{pmatrix} \mathbb{R}^3 = Z(e_2, T) \oplus Z(e_1 - e_3, T) \\ p_{e_2} = p_1 ; p_{e_1 - e_3} = p_2 \end{pmatrix}$

Problem 3. [10]

- (1) Let *V* be the \mathbb{R} -vector space of polynomials of degree ≤ 3 , endowed with the inner product $(f \mid g) = \int_{-1}^{1} f(t)g(t)dt$. Let *W* be the subspace spanned by the monomial x^2 (i.e., $W = \mathbb{R}x^2$) and *E* the orthogonal projection of *V* on *W*. Let $f = a + bx + cx^2 + dx^3 \in V$. Find E(f).
- (2) Let *V* be the \mathbb{R} -vector space of real-valued continuous functions on the interval [-1,1], endowed with the inner product $(f | g) = \int_{-1}^{1} f(t)g(t)dt$. Find the orthogonal complement of the subspace of even functions.

(1) Recall that if $\{\alpha_1, ..., \alpha_k\}$ is an orthogonal basis for W, then for any $\alpha \in V$, the orthogonal projection (best approximation) of α on W is given by

$$\bullet \quad E\alpha = \sum_{i=1}^{k} \frac{(\alpha \mid \alpha_i)}{\left\| \alpha_i \right\|^2} \alpha_i$$

In our case, $W = \mathbb{R}x^2$ so that, for any $f = a + bx + cx^2 + dx^3 \in V$, we have:

•
$$Ef = \frac{(f \mid x^2)}{\|x^2\|^2} x^2$$

$$\bullet (f \mid x^2) = \int_{-1}^{1} f(t)t^2 dt = \int_{-1}^{1} \left(at^2 + bt^3 + ct^4 + dt^5\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^{1} = \left(\frac{2}{3}a + \frac{2}{5}c\right) dt = \left(\frac{1}{3}at^5 + \frac{1}{5}ct^5 + \frac{1}{5}ct^5\right) dt = \left(\frac{1}{3}at^5 + \frac{1}{5}ct^5\right) dt =$$

- . $||x^2||^2 = (x^2 | x^2) = \frac{2}{5}$
- $\cdot \bullet Ef = \left(\frac{5}{3}a + c\right)x^2$

(2) Let W_e and W_o denote, respectively, the subspaces of V of even and odd functions.

. ••
$$W_o \subseteq W_e^{\perp}$$
: Let $f \in W_o$. Then, for any $g \in W_e$, we have

$$(f | g) = \int_{-1}^{1} f(t)g(t)dt$$

= $-\int_{-1}^{1} f(-t)g(t)dt \quad (f(t) = -f(-t))$
= $-\int_{1}^{-1} f(u)g(-u)(-du) \quad (u = -t)$
= $-\int_{-1}^{1} f(u)g(u)du \quad (g(-u) = g(u))$
= $-(f | g)$

Hence (f | g) = 0. That is, $f \in W_e^{\perp}$.

$$W_{e} \cap W_{o} = 0: \text{ Obvious}$$

$$. \bullet V = W_{e} \oplus W_{o} : \left\langle \begin{array}{c} \\ W = W_{e} + W_{o}: \forall f \in V, f(x) = \overbrace{\frac{1}{2}(f(x) + f(-x))}^{\in W_{e}} + \overbrace{\frac{1}{2}(f(x) - f(-x))}^{\in W_{o}} \end{array} \right\rangle$$

$$. \bullet W_{o} = W_{e}^{\perp}:$$

$$V = W_e \oplus W_o$$
$$W_o \subseteq W_e^{\perp}$$
$$W_e^{\perp} \cap W_e = 0$$

Problem 4. [10]

Let *V* be a finite-dimensional vector space over \mathbb{R} and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form on *V* given by

$$f(\alpha,\beta) = L_1 \alpha \ L_2 \beta$$

(1) Show that rank(f) = 1.

Next, let $V = \mathbb{R}^3$ and let

$$L_1: V \longrightarrow \mathbb{R} \qquad L_2: V \longrightarrow \mathbb{R}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - y \qquad ; \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - z$$

- (2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}$.
- (3) Let $B := \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for *V* such that the transition matrix from *B* to *S* is

$$P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.$$

Find the matrix of f in B

(4) Is *f* non-degenerate ? (Justify)

(1). Let

$$L_{f}: V \longrightarrow V^{\star}$$

$$\alpha \mapsto L_{f}\alpha: V \longrightarrow F$$

$$\beta \mapsto f(\alpha,\beta)$$

$$L_{f}\alpha = 0 \iff f(\alpha,\beta) = 0, \forall \beta$$

$$\iff L_{1}\alpha L_{2}\beta = 0, \forall \beta$$

$$\iff L_{1}\alpha = 0 \quad (\text{since } L_{2} \neq 0)$$

•• ... so that $\operatorname{nullity}(L_f) = \operatorname{nullity}(L_1)$.

. Then

• $\operatorname{rank}(f) = \operatorname{rank}(L_f)$

• =
$$\dim(V) - \operatorname{nullity}(L_f)$$

= $\dim(V) - \operatorname{nullity}(L_1)$
= $\operatorname{rank}(L_1)$

= 1 (since L_1 is a linear functional)

(2)

•

•
$$[f]_{S} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & f(e_{i}, e_{j}) & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$
 since $\begin{cases} L_{1}e_{1} = 1 & | & L_{2}e_{1} = 1 \\ L_{1}e_{2} = -1 & | & L_{2}e_{2} = 0 \\ L_{1}e_{3} = 0 & | & L_{2}e_{3} = -1 \end{cases}$

•
$$[f]_B = P^t [f]_S P$$

= $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$
• $= \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix}$

(4) Answer : NO.

• *f* is degenerate (or singular) since its matrix is singular (equivalently, since L_f is singular. e.g., $L_f e_3 = 0$ though $e_3 \neq 0$).

Problem 5. [10]

Let *V* be a finite-dimensional vector space over a field *F* and *T* a linear operator on *V*. Let $p = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ be the minimal polynomial of *T*, where $r_i \ge 1$ for each *i* and p_1, p_2, \dots, p_k are distinct monic irreducible polynomials in *F*[*x*]. For each *i* = 1,...,*k*, set $W_i := \text{Nullspace}(p_i^{r_i}(T))$.

- (1) Announce the Primary Decomposition Theorem.
- (2) For each *i*, prove there exists $\alpha_i \in W_i$ such that the *T*-annihilator of α_i is equal to $p_i^{r_i}$.
- (3) Use (2) to prove there exists $\alpha \in V$ such that the *T*-annihilator of α is equal to *p*.

(1) Under the above notation, the Primary Decomposition Theorem asserts that

- (a) •• $V = \bigoplus_{i=1}^{k} W_i$
- **(b)** W_i is invariant under $T, \forall i = 1, ..., k$
- (c) Min. Poly. $(T_{W_i}) = p_i^{r_i}, \forall i = 1,...,k$

Throughout, we shall denote by p_{α} the *T*-annihilator of α .

(2) • • •

Min. Poly. $(T_{W_i}) \stackrel{\text{by}(c)}{=} p_i^{r_i} \implies \forall \alpha \in W_i, p_i^{r_i}(T)\alpha = 0$ $\implies \exists \alpha_i \in W_i \ s.t. \ p_i^{r_i-1}(T)\alpha_i \neq 0$ (Minimality) $\implies p_{\alpha_i} \mid p_i^{r_i} \quad \text{but} \quad p_{\alpha_i} \nmid p_i^{r_i-1}$ $\implies p_{\alpha_i} = p_i^{r_i}$ (since p_i is monic irreducible) (3) • • • Let $\alpha := \sum_{i=1}^{k} \alpha_i$, the α_i 's from (2).

$$p_{\alpha}(T)\alpha = 0 \implies \sum_{i=1}^{k} \underbrace{p_{\alpha}(T)\alpha_{i}}_{\in W_{i} \text{ by }(b)} = 0$$

$$\implies p_{\alpha}(T)\alpha_{i} = 0 \text{, for each } i \text{, by }(a)$$

$$\stackrel{\text{by (2)}}{\Longrightarrow} p_{i}^{r_{i}} = p_{\alpha_{i}} \mid p_{\alpha} \text{, for each } i$$

$$\implies p = p_{1}^{r_{1}} \cdots p_{k}^{r_{k}} \mid p_{\alpha}$$

$$\implies p = p_{\alpha} \text{ since always } p_{\alpha} \mid p$$