King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 212) **Linear Algebra** (Duration = 3 hours)

Problem 1. Let *A* := $(0 \ 0 \ 2)$ $\overline{}$ 011 200 $\overline{ }$ \int on R. Determine its

- **(1)** Characteristic polynomial *f*
- **(2)** Minimal polynomial *p*
- **(3)** Jordan form *J*
- **(4)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Show that *T* has a cyclic vector.

Problem 2. Let *A* := $(1 \ 0 \ 0)$ $\overline{}$ 010 $1 -1 2$ 1 \int on R. Determine its

- **(1)** Invariant factors p_1, \ldots, p_r
- **(2)** Rational form *R*
- **(3)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1,e_2,e_3\}$. Find an explicit cyclic decomposition of \mathbb{R}^3 under *T*; namely, find α , $\beta \in \mathbb{R}^3$ and their respective *T*-annihilators such that $\mathbb{R}^3 = Z(\alpha, T) \oplus Z(\beta, T)$.
- **Problem 3.** (1) Let *V* be the R-vector space of polynomials of degree \leq 3, endowed with the inner product $(f | g)$ = \mathcal{C}^1 $^{-1}$ $f(t)g(t)dt$. Let *W* be the subspace spanned by the monomial x^2 (i.e., $W = \mathbb{R}x^2$) and *E* the orthogonal projection of *V* on *W*. Let $f = a + bx + cx^2 + dx^3 \in V$. Find $E(f)$.
	- **(2)** Let *V* be the R-vector space of real-valued continuous functions on the interval $[-1,1]$, endowed with the inner product (*f* | *g*) = \mathcal{C}^1 $^{-1}$ *f*(*t*)*g*(*t*)*dt*. Find the orthogonal complement of the subspace of even functions.

Problem 4. Let *V* be a finite-dimensional vector space over R and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form on *V* given by

$$
f(\alpha, \beta) = L_1 \alpha L_2 \beta
$$

(1) Show that rank(f) = 1.

Next, let $V = \mathbb{R}^3$ and let

$$
L_1: V \longrightarrow \mathbb{R} \qquad L_2: V \longrightarrow \mathbb{R}
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - y \qquad ; \qquad L_2: V \longrightarrow \mathbb{R}
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - z
$$

(2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}.$

(3) Let $B := \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for *V* such that the transition matrix from *B* to *S* is

$$
P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.
$$

Find the matrix of *f* in *B*

(4) Is *f non-degenerate* ? (Justify)

Problem 5. Let *V* be a finite-dimensional vector space over a field *F* and *T* a linear operator on *V*. Let $p = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ be the minimal polynomial of *T*, where $r_i \ge 1$ for each *i* and p_1, p_2, \dots, p_k are distinct monic irreducible polynomials in *F*[*x*]. For each $i = 1,...,k$, set $W_i :=$ Nullspace $(p_i^{r_i}(T))$.

- **(1)** Announce the Primary Decomposition Theorem.
- **(2)** For each *i*, prove there exists $\alpha_i \in W_i$ such that the *T*-annihilator of α_i is equal to $p_i^{r_i}$.
- **(3)** Use (2) to prove there exists $\alpha \in V$ such that the *T*-annihilator of α is equal to p .

—————————————————————–

King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 212)

Linear Algebra (Duration = 3 hours)

KEY

Problem 1. [10]

Let *A* := $(0 \ 0 \ 2)$ $\overline{}$ 011 200 $\overline{ }$ \int on R. Determine its

- **(1)** Characteristic polynomial *f*
- **(2)** Minimal polynomial *p*
- **(3)** Jordan form *J*
- **(4)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Show that *T* has a cyclic vector.

(1) •• $f = det(xI - A) = (x - 1)(x - 2)(x + 2)$ (*A* is diagonalizable)

(2) •• $p = f$ (since *f* and *p* share the same roots)

(3) •• *J* = $(1 \ 0 \ 0$ $\overline{}$ 02 0 $0 \t 0 \t -2$ $\overline{ }$ \int (since *A* is diagonalizable)

(There are six versions for *J* depending on the order of the characteristic values 1, 2, -2)

(4) .
$$
e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$
; $Te_3 = 2e_1 + e_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$; $T^2e_3 = 4e_1 + e_2 = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$

- $\cdot \bullet e_3$, Te_3 , T^2e_3 Linearly Independent
- $\cdot \bullet \mathbb{R}^3 = Z(e_3, T);$
- $\bullet \bullet e_3$ is a cyclic vector.

Problem 2. [10]

Let
$$
A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}
$$
 on R. Determine its

- **(1)** Invariant factors p_1, \ldots, p_r
- **(2)** Rational form *R*
- **(3)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1,e_2,e_3\}$. Find an explicit cyclic decomposition of \mathbb{R}^3 under *T*; namely, find α , $\beta \in \mathbb{R}^3$ and their respective *T*-annihilators such that $\mathbb{R}^3 = Z(\alpha, T) \oplus Z(\beta, T)$.

$$
(1) xI - A \sim \begin{pmatrix} (x-1)(x-2) & 0 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

• • •
$$
p_1 = p = (x-1)(x-2) = x^2 - 3x + 2
$$
 ; $p_2 = x-1$

$$
(2) \bullet \bullet \quad R = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}
$$

(3) We have a cyclic decomposition **:**

•
$$
\mathbb{R}^3 = Z(e_1, T) \oplus Z(e_2 + e_3, T)
$$

\n• $p_{e_1} = p_1$; $p_{e_2 + e_3} = p_2$

Indeed, first, recall that for any vector α , its *T*-annihilator $p_{\alpha} | p = (x-1)(x-2)$.

$$
T e1 = e1 + e3 \implies pe1 = p1 \implies {e1, Te1} basis for Z(e1, T)
$$

\n∴ β := e₂ + e₃ : Tβ = β \implies p_β = p₂ \implies {β} basis for Z(β, T)
\n∴ e₁ = $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; Te₁ = $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; β = $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Linearly Independent

$$
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; Te_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; \beta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$
Lineally Independent

Another cyclic decomposition **:** $\mathbb{R}^3 = Z(e_2, T) \oplus Z(e_1 - e_3, T)$ $p_{e_2} = p_1$; $p_{e_1-e_3} = p_2$

Problem 3. [10]

- (1) Let *V* be the R-vector space of polynomials of degree \leq 3, endowed with the inner product $(f | g) =$ \int_0^1 $^{-1}$ *f*(*t*)*g*(*t*)*dt*. Let *W* be the subspace spanned by the monomial x^2 (i.e., $W = Rx^2$) and *E* the orthogonal projection of *V* on *W*. Let $f = a + bx + cx^2 + dx^3 \in V$. Find $E(f)$.
- **(2)** Let *V* be the R-vector space of real-valued continuous functions on the interval $[-1,1]$, endowed with the inner product (*f* | *g*) = \mathcal{C}^1 $^{-1}$ *f*(*t*)*g*(*t*)*dt*. Find the orthogonal complement of the subspace of even functions.

(1) Recall that if $\{a_1,...,a_k\}$ is an orthogonal basis for *W*, then for any $\alpha \in V$, the orthogonal projection (best approximation) of α on *W* is given by

$$
\mathbf{a} \cdot \mathbf{E} \alpha = \sum_{i=1}^{k} \frac{(\alpha \mid \alpha_i)}{\left\| \alpha_i \right\|^2} \alpha_i
$$

In our case, $W = \mathbb{R}x^2$ so that, for any $f = a + bx + cx^2 + dx^3 \in V$, we have:

.
$$
Ef = \frac{(f | x^2)}{||x^2||^2} x^2
$$

$$
\Phi(f \mid x^2) = \int_{-1}^1 f(t)t^2 dt = \int_{-1}^1 \left(at^2 + bt^3 + ct^4 + dt^5\right) dt = \left[\frac{1}{3}at^3 + \frac{1}{4}bt^4 + \frac{1}{5}ct^5 + \frac{1}{6}dt^6\right]_{-1}^1 = \left(\frac{2}{3}a + \frac{2}{5}c\right)
$$

- . \bullet \vert $|x^2|$ \parallel $x^2 = (x^2 | x^2) = \frac{2}{5}$
- $\cdot \bullet \text{ } Ef = \left(\frac{5}{3}\right)$ $\frac{a}{3}$ a + *c* $\int x^2$

(2) Let *We* and *Wo* denote, respectively, the subspaces of *V* of even and odd functions.

•
$$
W_o \subseteq W_e^{\perp}
$$
: Let $f \in W_o$. Then, for any $g \in W_e$, we have

$$
(f | g) = \int_{-1}^{1} f(t)g(t)dt
$$

= $-\int_{-1}^{1} f(-t)g(t)dt$ $(f(t) = -f(-t))$
= $-\int_{1}^{-1} f(u)g(-u)(-du)$ $(u = -t)$
= $-\int_{-1}^{1} f(u)g(u)du$ $(g(-u) = g(u))$
= $-(f | g)$

Hence $(f | g) = 0$. That is, $f \in W_e^{\perp}$.

$$
W_e \cap W_o = 0: \text{ Obvious}
$$
\n
$$
\begin{aligned}\n &\bullet \quad \mathbf{V} = W_e \oplus W_o \quad \begin{cases}\n &\bullet \quad \mathbf{W}_e \\
&\downarrow \quad \mathbf{W} = W_e + W_o : \forall \ f \in V \text{ , } f(x) = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) - f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) - f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) - f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace{\frac{1}{2}(f(x) + f(-x))} + \overbrace{\frac{1}{2}(f(x) + f(-x))} \\
&\downarrow \quad \mathbf{W} = \overbrace
$$

$$
\begin{aligned}\n\bullet \quad & W_o = W_e^{\perp} \stackrel{\bullet}{\bullet} \\
& V = W_e \oplus W_o \\
& W_o \subseteq W_e^{\perp} \\
& W_e^{\perp} \cap W_e = 0\n\end{aligned}\n\right\} \quad \Longrightarrow\ W_e^{\perp} = W_o
$$

Problem 4. [10]

Let *V* be a finite-dimensional vector space over R and let *L*¹ and *L*² be two *nonzero* linear functionals on *V*. Consider the bilinear form on *V* given by

$$
f(\alpha, \beta) = L_1 \alpha L_2 \beta
$$

(1) Show that rank(f) = 1.

Next, let $V = \mathbb{R}^3$ and let

$$
L_1: V \longrightarrow \mathbb{R} \qquad L_2: V \longrightarrow \mathbb{R}
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - y \qquad ; \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - z
$$

- **(2)** Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}.$
- **(3)** Let $B := \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for *V* such that the transition matrix from *B* to *S* is

$$
P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.
$$

Find the matrix of f in B

(4) Is *f non-degenerate* ? (Justify)

(1) Let
$$
L_f: V \to V^*
$$

\n $\alpha \to L_f \alpha: V \to F$
\n $\beta \to f(\alpha, \beta)$
\n $L_f \alpha = 0 \iff f(\alpha, \beta) = 0, \forall \beta$
\n $\iff L_1 \alpha L_2 \beta = 0, \forall \beta$
\n $\iff L_1 \alpha = 0 \text{ (since } L_2 \neq 0)$

•• ... so that $nullity(L_f) = nullity(L_1)$.

. Then

- $rank(f) = rank(L_f)$
- $= \dim(V) \text{nullity}(L_f)$ $=$ dim(*V*) - nullity(*L*₁) $=$ rank(L_1)
- $= 1$ (since L_1 is a linear functional)

(2)

•
$$
[f]_S = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & f(e_i, e_j) & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}
$$

\n= $\begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ since $\begin{cases} L_1e_1 = 1 & | & L_2e_1 = 1 \\ L_1e_2 = -1 & | & L_2e_2 = 0 \\ L_1e_3 = 0 & | & L_2e_3 = -1 \end{cases}$

(3)

•
$$
[f]_B = P^t [f]_S P
$$

\n
$$
= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
$$
\n•
$$
= \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 2 \\ 1 & -1 & 2 \end{pmatrix}
$$

(4) Answer : NO.

• f is degenerate (or singular) since its matrix is singular (equivalently, since L_f is singular. e.g., $L_f e_3 = 0$ though $e_3 \neq 0$).

Problem 5. [10]

Let *V* be a finite-dimensional vector space over a field *F* and *T* a linear operator on *V*. Let $p = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ be the minimal polynomial of *T*, where $r_i \ge 1$ for each *i* and p_1, p_2, \dots, p_k are distinct monic irreducible polynomials in *F*[*x*]. For each $i = 1,...,k$, set $W_i := \text{Nullspace}(p_i^{r_i}(T))$.

- **(1)** Announce the Primary Decomposition Theorem.
- **(2)** For each *i*, prove there exists $\alpha_i \in W_i$ such that the *T*-annihilator of α_i is equal to $p_i^{r_i}$.
- **(3)** Use (2) to prove there exists $\alpha \in V$ such that the *T*-annihilator of α is equal to p .

(1) Under the above notation, the Primary Decomposition Theorem asserts that

- (a) •• $V = \bigoplus^{k}$ *i*=1 *Wi*
- (**b**) *W_i* is invariant under *T*, \forall *i* = 1,...,*k*
- (**c**) Min. Poly. $(T_{W_i}) = p_i^{r_i}, \forall i = 1,...,k$

Throughout, we shall denote by p_{α} the *T*-annihilator of α .

(2) • • •

Min. Poly. $(T_{W_i}) \stackrel{\text{by (c)}}{=} p_i^{r_i} \implies \forall \alpha \in W_i$, $p_i^{r_i}(T) \alpha = 0$ $\implies \exists \alpha_i \in W_i \text{ s.t. } p_i^{r_i-1}(T)\alpha_i \neq 0 \text{ (Minimality)}$ $\implies p_{\alpha_i} | p_i^{r_i}$ but $p_{\alpha_i} \nmid p_i^{r_i-1}$ *i* \implies $p_{\alpha_i} = p_i^{r_i}$ (since p_i is monic irreducible)

(3) • • • Let $\alpha := \sum_{k=1}^{k}$ *i*=1 α_i , the α_i 's from **(2)** .

$$
p_{\alpha}(T)\alpha = 0 \implies \sum_{i=1}^{k} \underbrace{p_{\alpha}(T)\alpha_i}_{\in W_i \text{ by (b)}} = 0
$$

$$
\implies p_{\alpha}(T)\alpha_i = 0 \text{, for each } i \text{, by (a)}
$$

$$
\frac{\text{by (2)}}{\text{to }} p_i^{r_i} = p_{\alpha_i} | p_{\alpha} \text{, for each } i
$$

$$
\implies p = p_1^{r_1} \cdots p_k^{r_k} | p_{\alpha}
$$

$$
\implies p = p_{\alpha} \text{ since always } p_{\alpha} | p
$$

—————————————————————–