King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 221)

Linear Algebra (Duration = 2 hours)

Name: ——

——- ID number: ——

Problem 1. Let T_1 , T_2 , and T_3 be linear operators on \mathbb{R}^3 represented in the standard basis $\{e_1, e_2, e_3\}$, respectively, by the following matrices

$$A_1 := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix} \quad ; \quad A_2 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad ; \quad A_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

For each T_i , find

- (a) the characteristic polynomial,
- (b) the characteristic values,
- (c) the minimal polynomial.
- (d) Determine if it is diagonalizable. If affirmative, find a basis *B* such that $[T_i]_B$ is diagonal.
- (e) Find a cyclic decomposition of \mathbb{R}^3 under T_i

Problem 2. Let *M* be a matrix with characteristic polynomial $f = x^3(x-1)^4$ and minimal polynomial $p = x^2(x-1)^2$. Find for *M* all possible rational forms and their respective Jordan forms

Problem 3. Let $V = F^{n \times n}$ be the vector space of $n \times n$ matrices over a field F and let $B \in V$.

- (a) Show that the function f_B defined on V by $f_B(A) = \text{trace}(B^t A)$ is a linear functional.
- (b) Show that every linear functional *f* on *V* is of the form $f = f_B$ for some *B* in *V*.
- (c) Show that the mapping $\phi: V \longrightarrow V^*$, $A \mapsto f_A$ is an isomorphism.

Problem 4. Let *V* be a finite-dimensional vector space over a field *F* of characteristic 0 and let *f* be a *symmetric* bilinear form on *V*. For each subspace *W* of *V*, let W^{\perp} be the subspace of all vectors α in *V* such that $f(\alpha, \beta) = 0$ for every β in *W*. Show that

- (a) *f* is non-degenerate if and only if $V^{\perp} = 0$
- (b) rank(f) = dim(V) dim(V^{\perp}).
- (c) $\dim(W^{\perp}) \ge \dim(V) \dim(W)$.
- (d) $V = W \oplus W^{\perp}$ if and only if the restriction of *f* to *W* is non-degenerate.

Written Comprehensive Exam (Term 221)

Linear Algebra (Duration = 2 hours)

KEY

Problem 1. [30]

Let T_1 , T_2 , and T_3 be linear operators on \mathbb{R}^3 represented in the standard basis $\{e_1, e_2, e_3\}$, respectively, by the following matrices

$$A_1 := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix} \quad ; \quad A_2 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad ; \quad A_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

For each T_i , find

- (a) the characteristic polynomial,
- (b) the characteristic values,
- (c) the minimal polynomial.
- (d) Determine if it is diagonalizable. If affirmative, find a basis *B* such that $[T_i]_B$ is diagonal.
- (e) Find a cyclic decomposition of \mathbb{R}^3 under T_i

•
$$A_1 := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$
 [10 points]

- (a) Charac. Poly. $(A_1) = det(xI A_1) = (x 1)(x 2)(x + 1) = x^3 2x^2 x + 2$ (A₁ is triangular)
- (b) Characteristic values: $c_1 = 1$, $c_2 = 2$, and $c_3 = -1$
- (c) Min. Poly. (A_1) = Charac. Poly. (A_1) = (x-1)(x-2)(x+1) since they share the same roots
- (d) A₁ is diagonalizable since its minimal polynomial is a product of distinct linear factors

Let
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

• $c_1 = 1$; $A_1 X = X$; $X = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$. Let $X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

•
$$c_2 = 2$$
 ; $A_1 X = 2X$; $X = \begin{pmatrix} x \\ x \\ 0 \end{pmatrix}$. Let $X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
• $c_3 = -1$; $A_1 X = -X$; $X = \begin{pmatrix} x \\ -2x \\ 2x \end{pmatrix}$. Let $X_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$
Let $B := \{X_1, X_2, X_3\}$. Then, $[T_1]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

(e) • Since Min. Poly.(A_1) = Charac. Poly.(A_1), T_1 has a cyclic vector.

•
$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
, $Te_3 = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$, $T^2e_3 = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$ Linearly Independent (that is, e_3 is a cyclic vector)

•
$$\mathbb{R}^3 = \mathbb{Z}(e_3, T);$$

•
$$A_2 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 [8 points]

- (a) Charac. Poly. $(A_2) = det(xI A_2) = x^3$
- (b) Characteristic value: c = 0
- •• (c) Since $A_2^2 \neq 0$, Min. Poly. $(A_2) = x^3$ by Cayley-Hamilton Theorem
- (d) A₂ is NOT diagonalizable as Min. Poly.(A₂) is NOT a product of distinct linear factors
- (e) Since Min. Poly.(A_2) = Charac. Poly.(A_2), T_2 has a cyclic vector.
- e_2 , $Te_2 = e_3$, $T^2e_2 = Te_3 = e_1$ Linearly Independent (that is, e_2 is a cyclic vector)

•
$$\mathbb{R}^3 = \mathbb{Z}(e_2, T)$$

•
$$A_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$
 [12 points]

- (a) Charac. Poly.(A_3) = det($xI A_3$) = $(x 1)^2(x 2) = x^3 4x^2 + 5x 2$
- (b) Characteristic values: $c_1 = 1$, $c_2 = 2$

- •• (c) Since $(A_3 I)(A_3 2I) = 0$, Min. Poly. $(A_3) = (x 1)(x 2) = x^2 3x + 2$
- (d) A₃ is diagonalizable since the minimal polynomial is a product of distinct linear factors
- Let $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ • $c_1 = 1$; $A_3 X = X$; $X = \begin{pmatrix} x \\ y \\ y - x \end{pmatrix}$. Let $X_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $X_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ • $c_2 = 2$; $A_3 X = 2X$; $X = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$. Let $X_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Let $B := \{X_1, X_2, X_3\}$. Then, $[T_1]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

(e) • The invariant factors are : $p_1 = \text{Min.Poly.}(T_3) = x^2 - 3x + 2$; $p_2 = x - 1$... and recall that for any vector α , its *T*-annihilator $p_{\alpha} | p_1$.

- $\{e_1, Te_1\}$ basis for $Z(e_1, T)$ since $Te_1 = e_1 + e_3$ and so $p_{e_1} = p_1$
- For $\beta := e_2 + e_3$, $\{\beta\}$ basis for $Z(\beta, T)$ since $T\beta = \beta$ and so $p_\beta = p_2$
- $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; Te_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \beta = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ Linearly Independent
- $\mathbb{R}^3 = Z(e_1, T) \oplus Z(e_2 + e_3, T)$ (or $\mathbb{R}^3 = Z(e_2, T) \oplus Z(e_1 e_3, T)$)

Problem 2. [30]

Let *M* be a matrix with characteristic polynomial $f = x^3(x-1)^4$ and minimal polynomial $p = x^3(x-1)^4$ $x^{2}(x-1)^{2}$. Find for M all possible rational forms and their respective Jordan forms

Case 1: [3 points]

- $\begin{cases} \bullet f = p_1 p_2 \text{ with } p_2 | p_1 \\ \bullet p_1 = p = x^2 (x-1)^2 = x^4 2x^3 + x^2 \\ \bullet p_2 = x(x-1)^2 = x^3 2x^2 + x \end{cases}$

Rational Form: [4 points]

Jordan Form: [8 points]

Characteristic Values $\begin{cases} c_1 = 0 & \text{with } d_1 = 3, r_1 = 2\\ c_2 = 1 & \text{with } d_2 = 4, r_2 = 2 \end{cases}$ $\mathcal{J}_1 = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, where $\begin{cases} A_1 & 3 \times 3 \text{ matrix} \\ A_2 & 4 \times 4 \text{ matrix} \end{cases}$ ••• For $c_1 = 0$: $J_1^{(1)} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ since $r_1 = 2$; $J_2^{(1)} = (0)$; $A_1 = \begin{pmatrix} J_1^{(1)} & 0 \\ 0 & J_2^{(1)} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ • For $c_2 = 1$: $J_1^{(2)} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ since $r_2 = 2$ 4

• $J_2^{(2)} = J_1^{(2)}$ since nullity($\mathcal{R}_1 - I$) = 2 as the characteristic space of 1 is generated by

Case 2: [3 points]

•
$$f = p_1 p_2 p_3$$
 with $p_3 |p_2| p_1$
 $p_1 = x^2 (x-1)^2 = x^4 - 2x^3 + x^2$
• $p_2 = x(x-1) = x^2 - x$
• $p_3 = x - 1$

Rational Form: [4 points]

Jordan Form: [8 points]

Similarly, as above, Characteristic Values $\begin{cases} c_1 = 0 & \text{with } d_1 = 3, r_1 = 2 \\ c_2 = 1 & \text{with } d_2 = 4, r_2 = 2 \end{cases}$

 $\mathcal{J}_2 = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \text{ where } \begin{cases} A_1 & 3 \times 3 \text{ matrix} \\ A_2 & 4 \times 4 \text{ matrix} \end{cases}$

••• For
$$c_1 = 0$$
: $J_1^{(1)} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ since $r_1 = 2$; $J_2^{(1)} = (0)$; $A_1 = \begin{pmatrix} J_1^{(1)} & 0 \\ 0 & J_2^{(1)} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- For $c_2 = 1$: $J_1^{(2)} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ since $r_2 = 2$
- $J_2^{(2)} = J_3^{(2)} = (1)$ since nullity($\mathcal{R}_2 I$) = 3 as the characteristic space of 1 is generated by

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} , \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• $A_2 = \begin{pmatrix} J_1^{(2)} & 0 & 0 \\ 0 & J_2^{(2)} & 0 \\ 0 & 0 & J_3^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
•• $\mathcal{J}_2 =$	0	0	0	1	0	0	0	
	0	0	0	1	1	0	0	
	0	0	0	0	0	1	0	
	0	0	0	0	0	0	1	

Problem 3. [20]

Let $V = F^{n \times n}$ be the vector space of $n \times n$ matrices over a field F and let $B \in V$.

- (a) Show that the function f_B defined on V by $f_B(A) = \text{trace}(B^t A)$ is a linear functional.
- (b) Show that every linear functional *f* on *V* is of the form $f = f_B$ for some *B* in *V*.
- (c) Show that the mapping $\phi: V \longrightarrow V^{\star}$, $A \mapsto f_A$ is an isomorphism.

(a) $f_B(A + cA') = trace(B^t(A + cA'))$ $= trace(B^tA + cB^tA')$ $= trace(B^tA) + c trace(B^tA')$, since trace is a linear functional $= f_B(A) + c f_B(A')$

(b) Let $E_{rs} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & e_{ij} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$ denote the $n \times n$ matrix with $e_{rs} = 1$ and $e_{ij} = 0 \quad \forall i \neq r \quad \forall j \neq s$.

- •• $(E_{rs})_{r,s}$ is a basis for *V*.
- Let $A = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & a_{ij} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \in V.$

$$\bullet \bullet A = \sum_{i,j} a_{ij} E_{ij}$$

Let $f \in V^{\star}$.

•• $f(A) = \sum_{i,j} a_{ij} f(E_{ij})$ (Property (3) of the dual basis - Section 3.5)

•• Take
$$B := \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & f(E_{ji}) & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$
 so that $B^t = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & f(E_{ij}) & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$

••
$$f_B(A) = trace(B^t A) = \sum_{1 \le j \le n} \sum_{1 \le i \le n} f(E_{ij}) a_{ij} = \sum_{i,j} a_{ij} f(E_{ij}) = f(A)$$

(c) •• ϕ is well-defined by (a)

•• ϕ is onto by (b)

•• ϕ is a linear transformation since for any $X \in V$: $f_{A_1+cA_2}(X) = trace((A_1 + cA_2)^t X) = trace(A_1^t X) + c \ trace(A_2^t X) = f_{A_1}(X) + c \ f_{A_2}(X)$

•• ϕ is an isomorphism since dim(V) = dim(V^{*}) (*i.e.*, = n^2)

Problem 4. [20]

Let *V* be a finite-dimensional vector space over a field *F* of characteristic 0 and let *f* be a *symmetric* bilinear form on *V*. For each subspace *W* of *V*, let W^{\perp} be the subspace of all vectors α in *V* such that $f(\alpha, \beta) = 0$ for every β in *W*.

Show that

(a) [2] *f* is non-degenerate if and only if $V^{\perp} = 0$

- (b) [6] $\operatorname{rank}(f) = \dim(V) \dim(V^{\perp})$.
- (c) [6] $\dim(W^{\perp}) \ge \dim(V) \dim(W)$.
- (d) [6] $V = W \oplus W^{\perp}$ if and only if the restriction of *f* to *W* is non-degenerate.

(a)

f is non-degenerate $\iff \forall 0 \neq \alpha \in V, \exists \beta \in V \text{ s.t. } f(\alpha, \beta) \neq 0$

$$\iff V^{\perp} = 0$$

(b) Let
$$n := \dim(V)$$
 and $r := \operatorname{rank}(f)$. We prove: $\dim(V^{\perp}) = n - r$.

Method 1: Since *f* is symmetric, there is an ordered basis $B = \{\alpha_1, \ldots, \alpha_n\}$ s.t. $[f]_B$ is diagonal

Mutatis mutandis, we may assume
$$\begin{cases} f(\alpha_i, \alpha_i) \neq 0 \ \forall \ 1 \le i \le r \\ f(\alpha_i, \alpha_i) = 0 \ \forall \ r+1 \le i \le n \\ f(\alpha_i, \alpha_j) = 0 \ \forall \ i \ne j \end{cases}$$

Claim: $V^{\perp} = \langle \alpha_{r+1}, \dots, \alpha_n \rangle$ (and we're done)

Let
$$i \in \{r+1,...,n\}$$
 and let $\beta = \sum_{j=1}^{n} c_j \alpha_j \in V$
 $f(\alpha_i, \beta) = \sum_{j=1}^{n} c_j f(\alpha_i, \alpha_j) = 0$ so that $\alpha_i \in V^{\perp}$

Let
$$\alpha = \sum_{j=1}^{n} c_j \alpha_j \in V^{\perp}$$
 and let $i \in \{1, \dots, r\}$.
 $0 = f(\alpha, \alpha_i) = \sum_{j=1}^{n} c_j f(\alpha_j, \alpha_i) = c_i f(\alpha_i, \alpha_i)$

Hence $c_i = 0$ (as $f(\alpha_i, \alpha_i) \neq 0$) and so $\alpha \in \left\langle \alpha_{r+1}, \dots, \alpha_n \right\rangle$

Method 2:

Method 2: Consider the linear transformation $\begin{array}{cccc}
L_f : & V & \longrightarrow & V^{\star} \\
& \alpha & \mapsto & L_f \alpha : & V & \longrightarrow & F \\
& & \beta & \mapsto & L_f \alpha(\beta) = f(\alpha, \beta)
\end{array}$

We have $\dim(V) = \operatorname{rank}(L_f) + \operatorname{nullity}(L_f)$

 $= \operatorname{rank}(f) + \operatorname{nullity}(L_f)$

But Nullspace(L_f) = {
$$\alpha \in V | L_f(\alpha) = 0$$
}
= { $\alpha \in V | f(\alpha, \beta) = 0 \forall \beta \in V$ }
= V^{\perp}

Therefore, $\dim(V^{\perp}) = \operatorname{nullity}(L_f) = \dim(V) - \operatorname{rank}(f)$.

(c) Let $n := \dim(V)$, $m := \dim(W)$, and $\{\beta_1, \dots, \beta_m\}$ be a basis for W.

 $\varphi: V \longrightarrow F^m$ $\alpha \mapsto (f(\alpha,\beta_1),\ldots,f(\alpha,\beta_m))$ Consider the linear transformation $\varphi(\alpha) = 0 \iff f(\alpha, \beta_i) = 0, \forall i = 1, ..., m$ $\iff f(\alpha,\beta) = 0, \forall \beta \in W$ $\iff \alpha \in W^{\perp}$

Hence Nullspace(φ) = W^{\perp} so that

$$\dim(W^{\perp}) = n - \operatorname{rank}(\varphi) \ge n - m$$

(d) First, we have

$$f|_W$$
 is non-degenerate $\iff \forall \ 0 \neq \alpha \in W, \ \exists \ \beta \in W \ s.t. \ f(\alpha, \beta) \neq 0$
 $\iff W \cap W^\perp = 0$

Claim: $W \cap W^{\perp} = 0 \Longrightarrow V = W \oplus W^{\perp}$ (and we're done)

Let
$$\begin{pmatrix} m = \dim(W) \text{ and } \{\beta_1, \dots, \beta_m\} \text{ be a basis for } W \\ s = \dim(W^{\perp}) \text{ and } \{\gamma_1, \dots, \gamma_s\} \text{ be a basis for } W^{\perp} \\ 11 \end{pmatrix}$$

 $W \cap W^{\perp} = 0 \implies \{\beta_1, \dots, \beta_m, \gamma_1, \dots, \gamma_s\}$ Lin. Indep.

- $\implies m+s \le n$
- $\implies m+s=n$ by (c)
- $\implies V = W \oplus W^{\perp}$