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Department of Mathematics

Written Comprehensive Exam (Term 232)
Linear Algebra (Duration = 3 hours | Max. Score = 100)

KEY

Problem 1. [15] [Section 3.4 - Ex 6 modified]

Let T be the linear operator on IR? defined by T(x1,x2) = (=x2,%1)
(1) [5] Consider the ordered basis B = {al,ag}, with a1 = (1,2) and ap = (1,-1). Find [T]B the matrix of T in B.
(2) [5] Prove that if B is any ordered basis for R? and [T]B = (ai]-), then ajay1 # 0.
(3) [5] Let W be a nonzero proper subspace of R2. Prove that W is NOT T-invariant.

SOLUTION

(1) e The matrix of T in the standard basis S is given by [T]S = ( ? _01 )

e r=(3 ) 5 = lre- (2 ) (8 0) (3 4) - (3R 3R)

(1 1]|-21 1 1 -2 1 1 0|-1/3 2/3 ) _(-1/3 2/3
Or (P‘[T]sp)‘(z 1)1 1)%(0 3|5 —1)*(0 1]-5/3 1/3) ' [T]B_(—5/3 1/3)'
(2) e LetP= (Z ;), the transition matrix from Bto S ; ad—bc #0.

e a4 1 d —c\[(0 =1\({a c) 1 [—(ac+bd) —(®+d?
°° [T]B_(azl a22)_P [T]Sp_gd—bc(—b a)(l 0)\b d) ™ ad—bc\ a®+b? ac+bd |
Ao =0 = 2+d?2=0 or a®?+1*=0

' — c¢=d=0o0ora=b=0

— ad-bc=0, absurd.

(3) e Charac.Poly.(T) = det ([T] s~ xI ) =x2+1, and so T has no real characteristic values.
e W is a nonzero proper subspace of R?, then dim(W) = 1.
e There is 0 # a € R? such that W = <a>.

ee If Wis T-invariant, then Ta = ca for some ¢ € R, absurd.



Problem 2. [15] [Section 3.5 - Ex 3, 17]
Let W be the space of n xn matrices over a field F and let Wy be the subspace spanned by the matrices C of the form
C := AB—BA. Recall that the trace of an n X1 matrix is equal to the sum of the n entries in the diagonal and let W;
denote the nullspace of the trace function on W.

(1) [5] Show that Wy C W;.

(2) [5] Construct in Wy a linearly independent set of n? —1 elements.

(3) [5] Deduce that Wy is exactly the subspace of matrices which have trace zero.

[Use the fact that the trace tr:W — F is a linear functional]

SOLUTION

(1) Let tr: le : fr( 4) be the trace function on W.
n n n n

oo Let A =(a;j), B=(bij) € W, then: tr(AB) = Z Za,»kbkl- = by = tr(BA).
i=1 k=1 k=1 i=1

ee Since tr is linear, then tr(AB — BA) = tr(AB) — tr(BA).
e Let C:= AB-BA. Then, tr(C) = tr(AB — BA) = tr(AB) — tr(BA) = 0. That is, C € Wj.

Therefore Wy C W;.

(2) Let E;j be the n X1 matrix, which takes 1 in the ith row & jth column and zero elsewhere.

EiExj = Eij
ee For every i,k I, with k#], we have <
EyxE;j =0

foreach i#1, A;j:=E; — E11 = EqnE1; — EiiEin € Wy
. ;KA |= 2-1.
oe Let < fOl‘ eaCh 1% ] , Al] = El] = EﬂEl] — E1jEil c WO |{ Z]} n

—— ——
:Ei]' =0

o {Ai j} Linearly Independent :

ZCiinj+ZciAii=0 ; ZCUEU’LZC"(E” - En)=0

i#] i#l i#j i#l

; (— Z ¢i=0is redundant)

< CijZO,Viij
=0,Vi#1l i#1

(3) e Since tr is a linear functional, then W is a hyperspace; that is, dim(W;) = dim(W) -1 = n?—1.
e Since Wy C Wy, then dim(Wy) < n?—1.

ee (2) = dim(Wy) > n? -1 and so dim(Wp) = n® - 1.



Wy C W1
- W() = Wl.
dim(W()) = dim(Wl)



Problem 3. [20] [Sections 6.2-6.4,7.1]
Find the characteristic and minimal polynomials for each one of the following matrices, and indicate whether the

matrix is diagonalizable or not with justification.

2 00

(1) 6]A=(1 1 Ofover R
0 0 1
0 1 0

2) B81A=[-1 1 OfoverR
1 01
00 0 2
1 00

(3) [6] A= 01 0 —1]|over C.
001 O

SOLUTION

Let f and p denote the characteristic and minimal polynomials, respectively.

(1) oo f=(x—1)*(x—2) over R.

oo A#],A+#2],and (A-I)(A-2[)=0,s0p = (x—1)(x —2).

ee A is diagonalizable since p is a product of distinct linear factors (Section 6.4 - Theorem 6).

(or rank(A —I) = 1 so that nullity(A —I) = 2 and hence A is diagonalizable (Section 6.2 - Theorem 2))

(2) o0 f=(x—1)(x>—x+1) over R.

oo 2

—x+1is a prime factor on R (since no roots).
ee By Generalized Cayley-Hamilton Theorem, p = f = (x — 1)(x?> —x +1).

ee Ais NOT diagonalizable as p is NOT a product of (distinct) linear factors (Section 6.4 - Theorem 6).

(3) Direct computation or using the fact that A has a companion form, we get:
oo f=p=xt+x2-2.
oo f=p=(2-1)(x2+2) = (x=1)(x+1)(x—i V2)(x +iV2) over C.

ee A is diagonalizable since it has 4 distinct characteristic values.



Problem 4. [10] [Sections 6.2-6.5]

Consider the real matrices A = ( } 11) and B = ( 1 Ti) , r#0.

(1) [5] Explain why there must exist a 2 X 2 invertible matrix P such that P~"'AP and P~!BP are both diagonal.
(2) [5] Find all matrices P satisfying (1).

SOLUTION

(1) ee Charac.Poly.(A) =x(x—2) ; Two distinct charac. values: 0,2 ; A diagonalizable.
ee Charac.Poly.(A) = (x+r—-1)(x—r—1) ; Two distinct charac. values: -r+1,r+1 ; B diagonalizable.

e Conclusion: Since A and B are diagonalizable and AB = BA, then there exists an invertible matrix P such that P~1AP
and P~'BP are both diagonal (Theorem 6.5-8).

(2) Direct :
a b .
LetP = with ad —bc # 0.
c d
(0 0\ . . 5 fa by 4., [-r+1 O
—(0 2) ; c=—a&d=b ; P_(—a b) ; P BP_( 0 r+1)
XXX P‘lAP<
(2 0 ) _ _ ) _[a b . . _[r+1 0
—(0 O) ; c=a&d=-b ; P_(a —b) ; P BP—( 0 —r+1)

e Conclusion: P = ( _aa I;) or ( Z Eb) , for any nonzero a,b € R.

Through Characteristic Vectors :

a
A=0 ; charac. vectors = (—a)’ for any nonzeroa € R
ee Matrix A : Charac. values <

A=2 ; charac. vectors = (Z), for any nonzero b € R

a
A=-r+1 ; charac. vectors = (—11)’ for any nonzeroa € R
ee Matrix B : Charac. values

A=r+1 ; charac. vectors = (g), for any nonzero b € R

° SO,P:(_aa b) or (b fa),foranynonzeroa,bG]R.



Problem 5. [25] [Sections 7.1-7.4]
1 0 00
0 001
LetA= 011 ol
0 00O
(1) [2] Reduce xI — A to its Smith normal form.
(2) [4] Use the Smith normal form of A to find its invariant factors.
(3) [3] Find the rational form for A.
(4) [8] Find the Jordan form for A.
(5) [8] Let T be a linear operator on R* such that A is the matrix associated to T in the standard basis {61,62,83,64}.
(a) Find the respective T-annihilators of ey, e;,e3, and e4.
(b) Announce the Cyclic Decomposition Theorem for this case.
(c) Find an explicit cyclic decomposition of R* under T.
SOLUTION
1 0 O 0
01 o0 0
(1) ee xI—A~ 00 x-1 0 sA=1/f=1/f=x-1/fs=x*(x-1).
00 0 x*(x-=1

(2) By the Invariant Factors Theorem combined with the uniqueness of the Smith normal form, we get

x*(x-1) 0 0 0
0 x-1 0 0 . .
x[—A ~ 0 0 1 ol where the invariant factors are
0 0 01

eep; =x*(x—1), Minimal Polynomial
[ X ] pz =X— 1

(3)
e Charac. Poly. f = pipp = x*(x—1)?
p1=x2(x—1)=x%-x?

p2=x-1

ee Rational Form :

(@) f =pip2 = ¥*(x—1)?



ec1 =0 withd;=2,r1=2

Characteristic Values { ecr=1 withdy=2.1=1

A~ A1 0 h e A1 2X2 matrix (since dq = 2)
0 A/ WRereY o Ay 2X2 matrix (since dp = 2)

For ¢y =0:

° il) = ((1) 8) since r; =2

0 0
'=>A1=f§1)=(1 0)

Forc, =1:

° ]f) = (1) sincer, =1

(2)
0 1 0\ .
e = Ay = (]B ](2)) = (0 1) since dp = 2 forces ];2) = (1)
2

0 0 0 0

1 0 0 0
Jordan Form :
0 0 1 0

0 0 0 1

pa divides py = x2(x—1)
(5) (a) The T-annihilator p, of any vector a satisfies <
Pa is minimal with (p,T)a =0

eTey=e1 = p, =x-1
eTes =e3 = p,, =x—1.
o T?e; =Tey = e3 = pe, = x(x—1).
. {64, Tes = ey, T?es = 63} linearly independent = p,, = p; = x*(x—1).
(b) Cyclic Decomposition Theorem: 3 &, 8 € R* such that

o R* = Z(a, T)® Z(8,T)

e with p, =p1 and pg = p2

_ R* = Z(es, T)© Z(e1, T))
€4

a= .
(c) Therefore, { : B=er ; thatis, § with Z(eg, T) = Rey ®Rey @ Res
and Z(€1,T) = ]R61



Problem 6. [15] [Section 8.3 - Ex 11]
Let V be a finite-dimensional inner product space.
(1) [3] Prove that any orthogonal projection of V on a subspace W is self-adjoint.
(2) [8] Let E be a projection (i.e., E = E?). Prove that if E is normal, then E and E* have the same nullspace, and
use this fact to show that V = Range(E) P (Range(E))*
(3) [4] Deduce from (1) and (2), that “a projection is normal if and only if it is self-adjoint.”

SOLUTION

(1) eee Let,f € Vand let E: V — W be the orthogonal projection. Then:

(Ea|B) (Ear| p—EB+EP)
(Ea|B—EP)+(Ea|EB) = (Ea|EP)
———

(Ea—:0?+a(|E‘B)
(Ea—a | EB)+(a| EP) = (a|EPB)
|

=0

So, E* =E.

(2) Nullspace(E) = Nullspace(E*):
e . Eisnormal, then EE* = E*E.
oo . ||Ea|?> = (Ea | Ea) = (o | E*Ea) = (a | EE*a) = (E*a | E*a) = ||E*0¢”2.

e . Ea=0=LE*a=0

V = Range(E) P (Range(E))* :

ee . Nullspace(E*) = (Range(E))* since E*a =0 (Ef|a)=(B|E*a)=0,VBeV

ee . V =Range(E) @Nullspace(E) = Range(E) @ Nullspace(E*) = Range(E) G}(Ramge(]f))L

eee (3) (=) Assume E is a normal projection. By (2), V = Range(E) @(Range(E))l. Hence, E is orthogonal on
Range(E) and so self-adjoint by (1).

o (&) Trivial.



