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KEY

Problem 1. [15] [Section 3.4 - Ex 6 modified]
Let T be the linear operator on R2 defined by T(x1,x2) = (−x2,x1)

(1) [5] Consider the ordered basis B =
{
α1,α2

}
, with α1 = (1,2) and α2 = (1,−1). Find

[
T
]
B

the matrix of T in B.

(2) [5] Prove that if B is any ordered basis for R2 and
[
T
]
B
=

(
ai j

)
, then a12a21 , 0.

(3) [5] Let W be a nonzero proper subspace of R2. Prove that W is NOT T-invariant.

—————————————
SOLUTION
—————————————

(1) • The matrix of T in the standard basis S is given by
[
T
]
S
=

(
0 −1
1 0

)
.

•••• P =
(

1 1
2 −1

)
;

[
T
]
B
= P−1

[
T
]
S
P =

1
−3

(
−1 −1
−2 1

) (
0 −1
1 0

) (
1 1
2 −1

)
=

(
−1/3 2/3
−5/3 1/3

)
.

Or
(
P

∣∣∣∣ [T]
S

P
)
=

(
1 1 −2 1
2 −1 1 1

)
→

(
1 1 −2 1
0 −3 5 −1

)
→

(
1 0 −1/3 2/3
0 1 −5/3 1/3

)
;

[
T
]
B
=

(
−1/3 2/3
−5/3 1/3

)
.

(2) • Let P =
(
a c
b d

)
, the transition matrix from B to S ; ad−bc , 0.

••

[
T
]
B
=

(
a11 a12
a21 a22

)
= P−1

[
T
]
S
P =

1
ad− bc

(
d −c
−b a

) (
0 −1
1 0

) (
a c
b d

)
=

1
ad− bc

(
−(ac+ bd) −(c2+d2)

a2+ b2 ac+ bd

)
.

••

a12a21 = 0 =⇒ c2+d2 = 0 or a2+ b2 = 0

=⇒ c = d = 0 or a = b = 0

=⇒ ad− bc = 0 , absurd.

(3) • Charac.Poly.(T) = det
([

T
]
S
−xI

)
= x2+1, and so T has no real characteristic values.

• W is a nonzero proper subspace of R2, then dim(W) = 1.

• There is 0 , α ∈R2 such that W =
〈
α
〉
.

•• If W is T-invariant, then Tα = cα for some c ∈R, absurd.
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Problem 2. [15] [Section 3.5 - Ex 3, 17]
Let W be the space of n×n matrices over a field F and let W0 be the subspace spanned by the matrices C of the form
C := AB−BA. Recall that the trace of an n×n matrix is equal to the sum of the n entries in the diagonal and let W1

denote the nullspace of the trace function on W.

(1) [5] Show that W0 ⊆W1.
(2) [5] Construct in W0 a linearly independent set of n2

−1 elements.
(3) [5] Deduce that W0 is exactly the subspace of matrices which have trace zero.

[Use the fact that the trace tr : W −→ F is a linear functional]

—————————————
SOLUTION
—————————————

(1) Let
tr : W −→ F

A 7→ tr(A) be the trace function on W.

•• Let A =
(
ai j

)
, B =

(
bi j

)
∈W, then: tr(AB) =

n∑
i=1

n∑
k=1

aikbki =

n∑
k=1

n∑
i=1

bkiaik = tr(BA).

•• Since tr is linear, then tr(AB−BA) = tr(AB)− tr(BA).

• Let C := AB−BA. Then, tr(C) = tr(AB−BA) = tr(AB)− tr(BA) = 0. That is, C ∈W1.

Therefore W0 ⊆W1.

(2) Let Ei j be the n×n matrix, which takes 1 in the ith row & jth column and zero elsewhere.

•• For every i, j,k, l, with k,l, we have
〈 EikEkj = Ei j

EikEl j = 0
.

•• Let
〈 for each i , 1 , Aii := Eii − E11 = Ei1E1i − E1iEi1 ∈W0

for each i , j , Ai j := Ei j = Ei1E1 j︸︷︷︸
= Ei j

− E1 jEi1︸︷︷︸
= 0

∈W0
;

∣∣∣∣{Ai j
}∣∣∣∣ = n2

−1.

•

{
Ai j

}
Linearly Independent :∑

i, j

ci jAi j+
∑
i,1

ciAii = 0 ;
∑
i, j

ci jEi j+
∑
i,1

ci
(
Eii − E11

)
= 0 ;

〈 ci j = 0 , ∀ i , j

ci = 0 , ∀ i , 1
;

(
−

∑
i,1

ci = 0 is redundant
)

(3) • Since tr is a linear functional, then W1 is a hyperspace; that is, dim(W1) = dim(W)−1 = n2
−1.

• Since W0 ⊆W1, then dim(W0) ≤ n2
−1.

•• (2) =⇒ dim(W0) ≥ n2
−1 and so dim(W0) = n2

−1.
2



•

W0 ⊆W1

dim(W0) = dim(W1)

 =⇒W0 =W1.
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Problem 3. [20] [Sections 6.2-6.4, 7.1]
Find the characteristic and minimal polynomials for each one of the following matrices, and indicate whether the
matrix is diagonalizable or not with justification.

(1) [6] A =

2 0 0
1 1 0
0 0 1

 over R

(2) [8] A =

 0 1 0
−1 1 0
1 0 1

 over R

(3) [6] A =


0 0 0 2
1 0 0 0
0 1 0 −1
0 0 1 0

 over C.

—————————————
SOLUTION
—————————————

Let f and p denote the characteristic and minimal polynomials, respectively.

(1) •• f = (x−1)2(x−2) over R.

•• A , I , A , 2I , and (A− I)(A−2I) = 0, so p = (x−1)(x−2).

•• A is diagonalizable since p is a product of distinct linear factors (Section 6.4 - Theorem 6).(
or rank(A− I) = 1 so that nullity(A− I) = 2 and hence A is diagonalizable (Section 6.2 - Theorem 2)

)
(2) •• f = (x−1)(x2

−x+1) over R.

•• x2
−x+1 is a prime factor on R (since no roots).

•• By Generalized Cayley-Hamilton Theorem, p = f = (x−1)(x2
−x+1).

•• A is NOT diagonalizable as p is NOT a product of (distinct) linear factors (Section 6.4 - Theorem 6).

(3) Direct computation or using the fact that A has a companion form, we get:

•• f = p = x4+x2
−2.

•• f = p = (x2
−1)(x2+2) = (x−1)(x+1)(x− i

√
2)(x+ i

√
2) over C.

•• A is diagonalizable since it has 4 distinct characteristic values.
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Problem 4. [10] [Sections 6.2-6.5]

Consider the real matrices A =
(

1 1
1 1

)
and B =

(
1 r
r 1

)
, r , 0.

(1) [5] Explain why there must exist a 2×2 invertible matrix P such that P−1AP and P−1BP are both diagonal.
(2) [5] Find all matrices P satisfying (1).

—————————————
SOLUTION
—————————————

(1) •• Charac.Poly.(A) = x(x−2) ; Two distinct charac. values: 0,2 ; A diagonalizable.

•• Charac.Poly.(A) = (x+ r−1)(x− r−1) ; Two distinct charac. values: -r+1, r+1 ; B diagonalizable.

• Conclusion: Since A and B are diagonalizable and AB = BA, then there exists an invertible matrix P such that P−1AP
and P−1BP are both diagonal (Theorem 6.5-8).

(2) Direct : ———————————————————————

Let P =
(

a b
c d

)
with ad− bc , 0.

•••• P−1AP
〈 = (

0 0
0 2

)
; c = −a & d = b ; P =

(
a b
−a b

)
; P−1BP =

(
−r+1 0

0 r+1

)

=

(
2 0
0 0

)
; c = a & d = −b ; P =

(
a b
a −b

)
; P−1BP =

(
r+1 0

0 −r+1

)

• Conclusion: P =
(

a b
−a b

)
or

(
a b
a −b

)
, for any nonzero a,b ∈R.

Through Characteristic Vectors : —————————————

•• Matrix A : Charac. values
〈 λ = 0 ; charac. vectors =

(
a
−a

)
, for any nonzero a ∈R

λ = 2 ; charac. vectors =
(
b
b

)
, for any nonzero b ∈R

•• Matrix B : Charac. values
〈 λ = −r+1 ; charac. vectors =

(
a
−a

)
, for any nonzero a ∈R

λ = r+1 ; charac. vectors =
(
b
b

)
, for any nonzero b ∈R

• So, P =
(

a b
−a b

)
or

(
b a
b −a

)
, for any nonzero a,b ∈R.
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Problem 5. [25] [Sections 7.1-7.4]

Let A =


1 0 0 0
0 0 0 1
0 1 1 0
0 0 0 0

.

(1) [2] Reduce xI−A to its Smith normal form.
(2) [4] Use the Smith normal form of A to find its invariant factors.
(3) [3] Find the rational form for A.
(4) [8] Find the Jordan form for A.
(5) [8] Let T be a linear operator on R4 such that A is the matrix associated to T in the standard basis

{
e1,e2,e3,e4

}
.

(a) Find the respective T-annihilators of e1,e2,e3, and e4.
(b) Announce the Cyclic Decomposition Theorem for this case.
(c) Find an explicit cyclic decomposition of R4 under T.

—————————————
SOLUTION
—————————————

(1) •• xI−A ∼


1 0 0 0
0 1 0 0
0 0 x−1 0
0 0 0 x2(x−1)

 ; f1 = 1 / f2 = 1 / f3 = x−1 / f4 = x2(x−1).

(2) By the Invariant Factors Theorem combined with the uniqueness of the Smith normal form, we get

xI−A ∼


x2(x−1) 0 0 0

0 x−1 0 0
0 0 1 0
0 0 0 1

, where the invariant factors are

{
•• p1 = x2(x−1) , Minimal Polynomial
•• p2 = x−1

(3)
• Charac. Poly. f = p1p2 = x2(x−1)2

p1 = x2(x−1) = x3
−x2

p2 = x−1

•• Rational Form :



0 0 0 0

1 0 0 0

0 1 1 0

0 0 0 1


(4) f = p1p2 = x2(x−1)2
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Characteristic Values
{
• c1 = 0 with d1 = 2,r1 = 2
• c2 = 1 with d2 = 2,r2 = 1

⇒ A ∼
(
A1 0
0 A2

)
, where

{
• A1 2×2 matrix (since d1 = 2)
• A2 2×2 matrix (since d2 = 2)

For c1 = 0:

• J(1)
1 =

(
0 0
1 0

)
since r1 = 2

• ⇒ A1 = J(1)
1 =

(
0 0
1 0

)
For c2 = 1:

• J(2)
1 =

(
1
)

since r2 = 1

• ⇒ A2 =

J(2)
1 0
0 J(2)

2

 = (
1 0
0 1

)
since d2 = 2 forces J(2)

2 =
(
1
)

Jordan Form :



0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1



(5) (a) The T-annihilator pα of any vector α satisfies
〈 pα divides p1 = x2(x−1)

pα is minimal with (pαT)α = 0

• Te1 = e1 ⇒ pe1 = x−1.

• Te3 = e3 ⇒ pe3 = x−1.

• T2e2 = Te2 = e3 ⇒ pe2 = x(x−1).

•

{
e4,Te4 = e2,T2e4 = e3

}
linearly independent⇒ pe4 = p1 = x2(x−1).

(b) Cyclic Decomposition Theorem: ∃ α,β ∈R4 such that{
• R4 = Z(α,T)⊕Z(β,T)
•with pα = p1 and pβ = p2

(c) Therefore,
{
• α = e4
• β = e1

; that is,


R4 = Z(e4,T)⊕Z(e1,T)

)
with Z(e4,T) =Re4⊕Re2⊕Re3
and Z(e1,T) =Re1
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Problem 6. [15] [Section 8.3 - Ex 11]
Let V be a finite-dimensional inner product space.

(1) [3] Prove that any orthogonal projection of V on a subspace W is self-adjoint.
(2) [8] Let E be a projection (i.e., E = E2). Prove that if E is normal, then E and E? have the same nullspace, and

use this fact to show that V = Range(E)
⊕

(Range(E))⊥

(3) [4] Deduce from (1) and (2), that “a projection is normal if and only if it is self-adjoint.”

—————————————
SOLUTION
—————————————

(1) ••• Let α,β ∈ V and let E : V −→W be the orthogonal projection. Then:

(Eα | β) = (Eα | β−Eβ+Eβ)
= (Eα | β−Eβ︸      ︷︷      ︸

= 0

)+ (Eα | Eβ) = (Eα | Eβ)

= (Eα−α+α | Eβ)
= (Eα−α | Eβ︸      ︷︷      ︸

= 0

)+ (α | Eβ) = (α | Eβ)

So, E? = E.

(2) Nullspace(E) = Nullspace(E?) :

• . E is normal, then EE? = E?E.

•• . ‖Eα‖2 = (Eα | Eα) = (α | E?Eα) = (α | EE?α) = (E?α | E?α) =
∥∥∥E?α

∥∥∥2
.

• . Eα = 0⇐⇒ E?α = 0

V = Range(E)
⊕

(Range(E))⊥ :

•• . Nullspace(E?) = (Range(E))⊥ since E?α = 0⇐⇒ (Eβ | α) = (β | E?α) = 0 , ∀ β ∈ V

•• . V = Range(E)
⊕

Nullspace(E) = Range(E)
⊕

Nullspace(E?) = Range(E)
⊕

(Range(E))⊥

••• (3) (=⇒) Assume E is a normal projection. By (2), V = Range(E)
⊕

(Range(E))⊥. Hence, E is orthogonal on
Range(E) and so self-adjoint by (1).

• (⇐=) Trivial.
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