King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 232)

Linear Algebra (Duration = 3 hours | Max. Score = 100)

KEY

Problem 1. [15] [Section 3.4 - Ex 6 modified]

Let *T* be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$

- (1) [5] Consider the ordered basis $B = \{\alpha_1, \alpha_2\}$, with $\alpha_1 = (1, 2)$ and $\alpha_2 = (1, -1)$. Find $[T]_B$ the matrix of *T* in *B*.
- (2) [5] Prove that if *B* is **any** ordered basis for \mathbb{R}^2 and $[T]_B = (a_{ij})$, then $a_{12}a_{21} \neq 0$.
- (3) [5] Let *W* be a nonzero proper subspace of \mathbb{R}^2 . Prove that *W* is NOT *T*-invariant.

SOLUTION

(1) • The matrix of *T* in the standard basis *S* is given by $\begin{bmatrix} T \end{bmatrix}_S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

••••
$$P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
; $[T]_B = P^{-1}[T]_S P = \frac{1}{-3} \begin{pmatrix} -1 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -1/3 & 2/3 \\ -5/3 & 1/3 \end{pmatrix}$.
Or $\left(P \mid \begin{bmatrix} T \end{bmatrix}_S P \right) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{vmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & -3 \end{vmatrix} \begin{vmatrix} -2 & 1 \\ 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} -1/3 & 2/3 \\ -5/3 & 1/3 \end{pmatrix}$; $[T]_B = \begin{pmatrix} -1/3 & 2/3 \\ -5/3 & 1/3 \end{pmatrix}$

(2) • Let
$$P = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
, the transition matrix from B to S ; $ad - bc \neq 0$.
• $[T]_B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = P^{-1}[T]_S P = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} -(ac + bd) & -(c^2 + d^2) \\ a^2 + b^2 & ac + bd \end{pmatrix}$
 $a_{12}a_{21} = 0 \implies c^2 + d^2 = 0 \text{ or } a^2 + b^2 = 0$
• $\implies c = d = 0 \text{ or } a = b = 0$
 $\implies ad - bc = 0$, absurd.

(3) • Charac. Poly.(*T*) = det($[T]_S - xI$) = $x^2 + 1$, and so *T* has no real characteristic values.

- *W* is a nonzero proper subspace of \mathbb{R}^2 , then dim(*W*) = 1.
- There is $0 \neq \alpha \in \mathbb{R}^2$ such that $W = \langle \alpha \rangle$.
- •• If *W* is *T*-invariant, then $T\alpha = c\alpha$ for some $c \in \mathbb{R}$, absurd.

Problem 2. [15] [Section 3.5 - Ex 3, 17]

Let *W* be the space of $n \times n$ matrices over a field *F* and let W_0 be the subspace spanned by the matrices *C* of the form C := AB - BA. Recall that the trace of an $n \times n$ matrix is equal to the sum of the n entries in the diagonal and let W_1 denote the nullspace of the trace function on *W*.

- (1) [5] Show that $W_0 \subseteq W_1$.
- (2) [5] Construct in W_0 a linearly independent set of $n^2 1$ elements.
- (3) [5] Deduce that W_0 is exactly the subspace of matrices which have trace zero.

[Use the fact that the trace $tr: W \longrightarrow F$ is a linear functional]

SOLUTION

(1) Let $\begin{array}{ccc} \operatorname{tr} : & W & \longrightarrow & F \\ & A & \mapsto & \operatorname{tr}(A) \end{array}$ be the trace function on W.

•• Let $A = (a_{ij})$, $B = (b_{ij}) \in W$, then: $\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \operatorname{tr}(BA)$. •• Since tr is linear, then $\operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA)$.

• Let C := AB - BA. Then, tr(C) = tr(AB - BA) = tr(AB) - tr(BA) = 0. That is, $C \in W_1$.

Therefore $W_0 \subseteq W_1$.

(2) Let E_{ii} be the $n \times n$ matrix, which takes 1 in the *i*th row & *j*th column and zero elsewhere.

•• For every *i*, *j*, *k*, *l*, with
$$k \neq l$$
, we have $\begin{pmatrix} E_{ik}E_{kj} = E_{ij} \\ E_{ik}E_{lj} = 0 \end{pmatrix}$.
•• Let $\begin{pmatrix} \text{for each } i \neq 1, A_{ii} := E_{ii} - E_{11} = E_{i1}E_{1i} - E_{1i}E_{i1} \in W_0 \\ \text{for each } i \neq j, A_{ij} := E_{ij} = \underbrace{E_{i1}E_{1j}}_{= E_{ij}} - \underbrace{E_{1j}E_{i1}}_{= 0} \in W_0 \quad ; \quad |\{A_{ij}\}| = n^2 - 1$

• $\{A_{ij}\}$ Linearly Independent :

$$\sum_{i \neq j} c_{ij} A_{ij} + \sum_{i \neq 1} c_i A_{ii} = 0 \quad ; \quad \sum_{i \neq j} c_{ij} E_{ij} + \sum_{i \neq 1} c_i (E_{ii} - E_{11}) = 0 \quad ; \quad \begin{pmatrix} c_{ij} = 0, \forall i \neq j \\ c_i = 0, \forall i \neq 1 \end{pmatrix} ; \quad \left(-\sum_{i \neq 1} c_i = 0 \text{ is redundant} \right)$$

(3) • Since tr is a linear functional, then W_1 is a hyperspace; that is, $\dim(W_1) = \dim(W) - 1 = n^2 - 1$.

- Since $W_0 \subseteq W_1$, then dim $(W_0) \le n^2 1$.
- •• (2) \Longrightarrow dim $(W_0) \ge n^2 1$ and so dim $(W_0) = n^2 1$.

• $W_0 \subseteq W_1$ dim $(W_0) = \dim(W_1)$ $\Longrightarrow W_0 = W_1.$

Problem 3. [20] [Sections 6.2-6.4, 7.1]

Find the characteristic and minimal polynomials for each one of the following matrices, and indicate whether the matrix is diagonalizable or not with justification.

(1) [6]
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 over \mathbb{R}
(2) [8] $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ over \mathbb{R}
(3) [6] $A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ over \mathbb{C} .

SOLUTION

Let *f* and *p* denote the characteristic and minimal polynomials, respectively.

(1) ••
$$f = (x-1)^2(x-2)$$
 over \mathbb{R} .

- •• $A \neq I$, $A \neq 2I$, and (A I)(A 2I) = 0, so p = (x 1)(x 2).
- •• *A* is diagonalizable since *p* is a product of distinct linear factors (Section 6.4 Theorem 6).

(or rank(A - I) = 1 so that nullity(A - I) = 2 and hence A is diagonalizable (Section 6.2 - Theorem 2))

- (2) •• $f = (x-1)(x^2 x + 1)$ over \mathbb{R} .
- •• $x^2 x + 1$ is a prime factor on \mathbb{R} (since no roots).
- •• By Generalized Cayley-Hamilton Theorem, $p = f = (x 1)(x^2 x + 1)$.
- •• *A* is NOT diagonalizable as *p* is NOT a product of (distinct) linear factors (Section 6.4 Theorem 6).

(3) Direct computation or using the fact that *A* has a companion form, we get:

- •• $f = p = x^4 + x^2 2$.
- •• $f = p = (x^2 1)(x^2 + 2) = (x 1)(x + 1)(x i\sqrt{2})(x + i\sqrt{2})$ over \mathbb{C} .
- •• A is diagonalizable since it has 4 distinct characteristic values.

Problem 4. [10] [Sections 6.2-6.5]

Consider the real matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$, $r \neq 0$.

- (1) [5] **Explain** why there must exist a 2×2 invertible matrix *P* such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.
- (2) [5] **Find** all matrices *P* satisfying (1).

SOLUTION

- (1) •• Charac. Poly.(A) = x(x-2); Two distinct charac. values: 0,2; A diagonalizable.
- •• Charac. Poly.(A) = (x + r 1)(x r 1); Two distinct charac. values: -r+1, r+1; B diagonalizable.

• Conclusion: Since *A* and *B* are diagonalizable and AB = BA, then there exists an invertible matrix *P* such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal (Theorem 6.5-8).

(2) Direct :
Let
$$P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $ad - bc \neq 0$.
••••• $P^{-1}AP \begin{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$; $c = -a \& d = b$; $P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix}$; $P^{-1}BP = \begin{pmatrix} -r+1 & 0 \\ 0 & r+1 \end{pmatrix}$
 $= \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$; $c = a \& d = -b$; $P = \begin{pmatrix} a & b \\ a & -b \end{pmatrix}$; $P^{-1}BP = \begin{pmatrix} r+1 & 0 \\ 0 & -r+1 \end{pmatrix}$
 $= \begin{pmatrix} -r+1 & 0 \\ 0 & -r+1 \end{pmatrix}$

• Conclusion:
$$P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix}$$
 or $\begin{pmatrix} a & b \\ a & -b \end{pmatrix}$, for any nonzero $a, b \in \mathbb{R}$

Through Characteristic Vectors : -

•• Matrix *A* : Charac. values

$$\begin{array}{l}
\lambda = 0 \quad ; \quad \text{charac. vectors} = \begin{pmatrix} a \\ -a \end{pmatrix}, \text{ for any nonzero } a \in \mathbb{R} \\
\lambda = 2 \quad ; \quad \text{charac. vectors} = \begin{pmatrix} b \\ b \end{pmatrix}, \text{ for any nonzero } b \in \mathbb{R} \\
\end{array}$$
•• Matrix *B* : Charac. values

$$\begin{array}{l}
\lambda = -r+1 \quad ; \quad \text{charac. vectors} = \begin{pmatrix} a \\ -a \end{pmatrix}, \text{ for any nonzero } a \in \mathbb{R} \\
\lambda = r+1 \quad ; \quad \text{charac. vectors} = \begin{pmatrix} b \\ b \end{pmatrix}, \text{ for any nonzero } b \in \mathbb{R} \\
\end{array}$$
• So, $P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix}$ or $\begin{pmatrix} b & a \\ b & -a \end{pmatrix}$, for any nonzero $a, b \in \mathbb{R}$.

Problem 5. [25] [Sections 7.1-7.4] Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- (1) [2] Reduce xI A to its Smith normal form.
- (2) [4] Use the Smith normal form of *A* to find its invariant factors.
- (3) [3] Find the rational form for *A*.
- (4) [8] Find the Jordan form for *A*.
- (5) [8] Let *T* be a linear operator on \mathbb{R}^4 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3, e_4\}$. (a) Find the respective *T*-annihilators of e_1, e_2, e_3 , and e_4 .
 - (b) Announce the Cyclic Decomposition Theorem for this case.
 - (c) Find an explicit cyclic decomposition of \mathbb{R}^4 under *T*.

SOLUTION

(1) ••
$$xI - A \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & x - 1 & 0 \\ 0 & 0 & 0 & x^2(x - 1) \end{pmatrix}$$
; $f_1 = 1 / f_2 = 1 / f_3 = x - 1 / f_4 = x^2(x - 1)$.

(2) By the Invariant Factors Theorem combined with the uniqueness of the Smith normal form, we get

 $xI - A \sim \begin{pmatrix} x^2(x-1) & 0 & 0 & 0 \\ 0 & x-1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, where the invariant factors are

$$\begin{cases} \bullet \bullet p_1 = x^2(x-1) , \text{ Minimal Polynomial} \\ \bullet \bullet p_2 = x-1 \end{cases}$$

(3) • Charac. Poly. $f = p_1 p_2 = x^2 (x-1)^2$ $p_1 = x^2 (x-1) = x^3 - x^2$ $p_2 = x - 1$

	0	0	0	0	
a Dational Form	1	0	0 0	0	
•• Rational Form :	0	1	1	0	
	0	0	0	1)	

(4) $f = p_1 p_2 = x^2 (x-1)^2$

Characteristic Val	ues {	• c ₁ = • c ₂ =	=0 w =1 w	with $d_1 = 2, r_1 = 2$ with $d_2 = 2, r_2 = 1$
$\Rightarrow A \sim \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$	where	$\left\{\begin{array}{c}\bullet A\\\bullet A\end{array}\right.$	$A_1 = 2$ $A_2 = 2$	×2 matrix (since $d_1 = 2$) ×2 matrix (since $d_2 = 2$)
For $c_1 = 0$:				
• $J_1^{(1)} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \sin \theta$	$ce r_1 =$	2		
$\bullet \Rightarrow A_1 = J_1^{(1)} = \begin{pmatrix} 0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$			
For $c_2 = 1$:				
• $J_1^{(2)} = (1)$ since r_2	2 = 1			
$\bullet \Rightarrow A_2 = \begin{pmatrix} J_1^{(2)} & 0 \\ 0 & J_2^{(2)} \end{pmatrix}$	$\binom{1}{2}{2} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	since	$d_2 = 2$ forces $J_2^{(2)} = (1)$
	0	0	0	0
Jordan Form :	1	0	0	0
	0	0	1	0
	0	0	0	1)

 $\begin{cases} p_{\alpha} \text{ divides } p_1 = x^2(x-1) \\ p_{\alpha} \text{ is minimal with } (p_{\alpha}T)\alpha = 0 \end{cases}$ (5) (a) The *T*-annihilator p_{α} of any vector α satisfies

- $Te_1 = e_1 \Rightarrow p_{e_1} = x 1.$
- $Te_3 = e_3 \Rightarrow p_{e_3} = x 1$.
- $T^2e_2 = Te_2 = e_3 \Rightarrow p_{e_2} = x(x-1).$
- $\{e_4, Te_4 = e_2, T^2e_4 = e_3\}$ linearly independent $\Rightarrow p_{e_4} = p_1 = x^2(x-1).$

(b) Cyclic Decomposition Theorem: $\exists \alpha, \beta \in \mathbb{R}^4$ such that $\begin{cases} \bullet \mathbb{R}^4 = Z(\alpha, T) \oplus Z(\beta, T) \\ \bullet \text{ with } p_\alpha = p_1 \text{ and } p_\beta = p_2 \end{cases}$

(c) Therefore,
$$\begin{cases} \bullet \alpha = e_4 \\ \bullet \beta = e_1 \end{cases}$$
; that is,
$$\begin{cases} \mathbb{R}^4 = Z(e_4, T) \oplus Z(e_1, T) \\ \text{with } Z(e_4, T) = \mathbb{R}e_4 \oplus \mathbb{R}e_2 \oplus \mathbb{R}e_3 \\ \text{and } Z(e_1, T) = \mathbb{R}e_1 \end{cases}$$

Problem 6. [15] [Section 8.3 - Ex 11]

Let *V* be a finite-dimensional inner product space.

- (1) [3] Prove that any orthogonal projection of *V* on a subspace *W* is self-adjoint.
- (2) [8] Let *E* be a projection (i.e., $E = E^2$). Prove that if *E* is normal, then *E* and E^* have the same nullspace, and use this fact to show that $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$
- (3) [4] Deduce from (1) and (2), that "a projection is normal if and only if it is self-adjoint."

SOLUTION

(1) • • • Let $\alpha, \beta \in V$ and let $E: V \longrightarrow W$ be the orthogonal projection. Then:

$$(E\alpha \mid \beta) = (E\alpha \mid \beta - E\beta + E\beta)$$

= $(E\alpha \mid \beta - E\beta) + (E\alpha \mid E\beta) = (E\alpha \mid E\beta)$
= $(E\alpha - \alpha + \alpha \mid E\beta)$
= $(E\alpha - \alpha \mid E\beta) + (\alpha \mid E\beta) = (\alpha \mid E\beta)$
= 0

So,
$$E^{\star} = E$$
.

(2) Nullspace(E) = Nullspace(E^*):

- . *E* is normal, then $EE^* = E^*E$.
- •• . $||E\alpha||^2 = (E\alpha | E\alpha) = (\alpha | E^*E\alpha) = (\alpha | EE^*\alpha) = (E^*\alpha | E^*\alpha) = ||E^*\alpha||^2$.
- . $E\alpha = 0 \iff E^*\alpha = 0$
- $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$:
- •• . Nullspace $(E^*) = (\text{Range}(E))^{\perp}$ since $E^* \alpha = 0 \iff (E\beta \mid \alpha) = (\beta \mid E^* \alpha) = 0$, $\forall \beta \in V$
- •• . $V = \text{Range}(E) \bigoplus \text{Nullspace}(E) = \text{Range}(E) \bigoplus \text{Nullspace}(E^*) = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$

••• (3) (\implies) Assume *E* is a normal projection. By (2), $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$. Hence, *E* is orthogonal on Range(*E*) and so self-adjoint by (1).

• (←) Trivial.