King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 232)

Linear Algebra (Duration = 3 hours | Max. Score = 100)

KEY

Problem 1. [**15**] [**Section 3.4 - Ex 6 modified**]

Let *T* be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$

- (1) [5] Consider the ordered basis $B = \{\alpha_1, \alpha_2\}$, with $\alpha_1 = (1, 2)$ and $\alpha_2 = (1, -1)$. Find $\lceil T \rceil$ B_B the matrix of *T* in *B*.
- (2) [5] Prove that if *B* is any ordered basis for \mathbb{R}^2 and $\lceil T \rceil$ $B = (a_{ij})$, then $a_{12}a_{21} \neq 0$.
- (3) [5] Let *W* be a nonzero proper subspace of \mathbb{R}^2 . Prove that *W* is NOT *T*-invariant.

SOLUTION

—————————————

—————————————

(1) • The matrix of *T* in the standard basis *S* is given by $\lfloor T \rfloor$ $S =$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

$$
\begin{aligned}\n\bullet \bullet \bullet \bullet \quad P &= \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \quad ; \quad \left[T \right]_B = P^{-1} \left[T \right]_S P = \frac{1}{-3} \begin{pmatrix} -1 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -1/3 & 2/3 \\ -5/3 & 1/3 \end{pmatrix} . \\
\text{Or } \left(P \right) \left[T \right]_S P \right) &= \begin{pmatrix} 1 & 1 & -2 & 1 \\ 2 & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 & 2/3 \\ 0 & 1 & -5/3 & 1/3 \end{pmatrix} \quad ; \quad \left[T \right]_B = \begin{pmatrix} -1/3 & 2/3 \\ -5/3 & 1/3 \end{pmatrix} .\n\end{aligned}
$$

(2) • Let
$$
P = \begin{pmatrix} a & c \\ b & d \end{pmatrix}
$$
, the transition matrix from B to S ; $ad - bc \neq 0$.
\n• $[T]_B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = P^{-1}[T]_S P = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} -(ac + bd) & -(c^2 + d^2) \\ a^2 + b^2 & ac + bd \end{pmatrix}$
\n $a_{12}a_{21} = 0 \implies c^2 + d^2 = 0 \text{ or } a^2 + b^2 = 0$
\n• $c = d = 0 \text{ or } a = b = 0$

.

=⇒ *ad*−*bc* = 0 , absurd.

(3) • Charac. Poly.(*T*) = det $\left(\left[T\right]\right)$ $S - xI$) = $x^2 + 1$, and so *T* has no real characteristic values.

- *W* is a nonzero proper subspace of \mathbb{R}^2 , then dim(*W*) = 1.
- There is $0 \neq \alpha \in \mathbb{R}^2$ such that $W = \langle \alpha \rangle$.
- •• If *W* is *T*-invariant, then $T\alpha = c\alpha$ for some $c \in \mathbb{R}$, absurd.

Problem 2. [**15**] [**Section 3.5 - Ex 3, 17**]

Let *W* be the space of $n \times n$ matrices over a field *F* and let W_0 be the subspace spanned by the matrices *C* of the form *C* := *AB*−*BA*. Recall that the trace of an *n*×*n* matrix is equal to the sum of the n entries in the diagonal and let *W*¹ denote the nullspace of the trace function on *W*.

(1) [**5**] Show that $W_0 \subseteq W_1$.

—————————————

—————————————

- (2) [5] Construct in W_0 a linearly independent set of $n^2 1$ elements.
- (3) [5] Deduce that W_0 is exactly the subspace of matrices which have trace zero.

[Use the fact that the trace $tr: W \longrightarrow F$ is a linear functional]

SOLUTION

(1) Let $\begin{array}{ccc} \n\text{tr} : & W & \longrightarrow & F \\
A & \mapsto & \text{tr}(A) \n\end{array}$ be the trace function on *W*.

•• Let $A = (a_{ij})$, $B = (b_{ij}) \in W$, then: $tr(AB) = \sum_{i=1}^{n}$ *i*=1 X*n k*=1 $a_{ik}b_{ki} = \sum_{i=1}^{n}$ *k*=1 X*n i*=1 $b_{ki}a_{ik} = \text{tr}(BA).$ •• Since tr is linear, then $tr(AB - BA) = tr(AB) - tr(BA)$.

• Let *C* := *AB*−*BA*. Then, tr(*C*) = tr(*AB*−*BA*) = tr(*AB*)−tr(*BA*) = 0. That is, *C* ∈ *W*1.

Therefore $W_0 \subseteq W_1$.

(2) Let E_{ij} be the $n \times n$ matrix, which takes 1 in the *i*th row & *j*th column and zero elsewhere.

• For every *i*, *j*, *k*, *l*, with *k*
$$
\neq
$$
l, we have\n
$$
\begin{cases}\nE_{ik}E_{kj} = E_{ij} \\
E_{ik}E_{lj} = 0\n\end{cases}
$$
\nfor each $i \neq 1$, $A_{ii} := E_{ii} - E_{11} = E_{i1}E_{1i} - E_{1i}E_{i1} \in W_0$ \n• Let\n
$$
\begin{cases}\n\text{for each } i \neq j, A_{ij} := E_{ij} = \underbrace{E_{i1}E_{1j}}_{= E_{ij}} - \underbrace{E_{1j}E_{i1}}_{= E_{ij}} \in W_0\n\end{cases}
$$
\n
$$
|\{A_{ij}\}| = n^2 - 1.
$$

• $\{A_{ij}\}\$ Linearly Independent **:**

$$
\sum_{i \neq j} c_{ij} A_{ij} + \sum_{i \neq 1} c_i A_{ii} = 0 \quad ; \quad \sum_{i \neq j} c_{ij} E_{ij} + \sum_{i \neq 1} c_i (E_{ii} - E_{11}) = 0 \quad ; \quad \begin{cases} c_{ij} = 0 \,, \forall \ i \neq j \\ c_i = 0 \,, \forall \ i \neq 1 \end{cases} \quad ; \quad \left(- \sum_{i \neq 1} c_i = 0 \text{ is redundant} \right)
$$

(3) • Since tr is a linear functional, then W_1 is a hyperspace; that is, dim(W_1) = dim(W) − 1 = n^2 − 1.

- Since $W_0 \subseteq W_1$, then $\dim(W_0) \le n^2 1$.
- •• (2) \implies dim(W_0) $\geq n^2 1$ and so dim(W_0) = $n^2 1$.

• *W*⁰ ⊆ *W*¹ $dim(W_0) = dim(W_1)$ $\left\{ \right.$ \int \Longrightarrow $W_0 = W_1$.

Problem 3. [**20**] [**Sections 6.2-6.4, 7.1**]

Find the characteristic and minimal polynomials for each one of the following matrices, and indicate whether the matrix is diagonalizable or not with justification.

(1)
$$
[6] A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 over R
\n(2) $[8] A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ over R
\n(3) $[6] A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ over C.

SOLUTION

Let *f* and *p* denote the characteristic and minimal polynomials, respectively.

(1)
$$
\bullet \bullet f = (x-1)^2(x-2)
$$
 over R.

—————————————

—————————————

- •• $A \neq I$, $A \neq 2I$, and $(A I)(A 2I) = 0$, so $p = (x 1)(x 2)$.
- •• *A* is diagonalizable since *p* is a product of distinct linear factors (Section 6.4 Theorem 6).

or rank(*A*−*I*) = 1 so that nullity(*A*−*I*) = 2 and hence *A* is diagonalizable (Section 6.2 - Theorem 2)

- **(2)** •• $f = (x-1)(x^2 x + 1)$ over ℝ.
- •• $x^2 x + 1$ is a prime factor on R (since no roots).
- •• By Generalized Cayley-Hamilton Theorem, $p = f = (x-1)(x^2 x + 1)$.
- •• *A* is NOT diagonalizable as *p* is NOT a product of (distinct) linear factors (Section 6.4 Theorem 6).
- **(3)** Direct computation or using the fact that *A* has a companion form, we get:
- •• $f = p = x^4 + x^2 2$.
- •• $f = p = (x^2 1)(x^2 + 2) = (x 1)(x + 1)(x i)$ √ 2)(*x*+*i* √ $\overline{2}$) over $\mathbb{C}.$
- •• *A* is diagonalizable since it has 4 distinct characteristic values.

Problem 4. [**10**] [**Sections 6.2-6.5**]

—————————————

—————————————

Consider the real matrices *A* = $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $B =$ 1 *r r* 1 \int , $r \neq 0$.

- (1) [5] **Explain** why there must exist a 2 × 2 invertible matrix *P* such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.
- (2) [**5**] **Find** all matrices *P* satisfying (1).

SOLUTION

- **(1)** •• Charac.Poly.(*A*) = *x*(*x*−2) ; Two distinct charac. values: 0,2 ; *A* diagonalizable.
- •• Charac.Poly. $(A) = (x + r 1)(x r 1)$; Two distinct charac. values: -r+1, r+1 ; *B* diagonalizable.

• Conclusion: Since *A* and *B* are diagonalizable and *AB* = *BA*, then there exists an invertible matrix *P* such that *P* [−]1*AP* and *P*⁻¹*BP* are both diagonal (Theorem 6.5-8).

$$
\begin{aligned}\n\text{(2) Direct:} & \frac{1}{\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)} \text{ with } ad - bc \neq 0. \\
& \text{...} \quad P = \begin{pmatrix} a & b \\ 0 & 2 \end{pmatrix} \quad \text{...} \quad c = -a \, \& \, d = b \quad \text{...} \quad P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix} \quad \text{...} \quad P^{-1}BP = \begin{pmatrix} -r + 1 & 0 \\ 0 & r + 1 \end{pmatrix} \\
& \text{...} \quad P^{-1}AP \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{...} \quad c = a \, \& \, d = -b \quad \text{...} \quad P = \begin{pmatrix} a & b \\ a & -b \end{pmatrix} \quad \text{...} \quad P^{-1}BP = \begin{pmatrix} r + 1 & 0 \\ 0 & -r + 1 \end{pmatrix}.\n\end{aligned}
$$

• Conclusion:
$$
P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix}
$$
 or $\begin{pmatrix} a & b \\ a & -b \end{pmatrix}$, for any nonzero $a, b \in \mathbb{R}$.

Through Characteristic Vectors : -

• Matrix *A* : Charac. values
$$
\begin{pmatrix} \lambda = 0 & ; \text{ charac. vectors} = \begin{pmatrix} a \\ -a \end{pmatrix}
$$
, for any nonzero $a \in \mathbb{R}$
\n• Matrix *B* : Charac. values $\begin{pmatrix} \lambda = -r + 1 & ; \text{ charac. vectors} = \begin{pmatrix} b \\ b \end{pmatrix}$, for any nonzero $b \in \mathbb{R}$
\n• Matrix *B* : Charac. values $\begin{pmatrix} \lambda = -r + 1 & ; \text{ charac. vectors} = \begin{pmatrix} a \\ -a \end{pmatrix}$, for any nonzero $a \in \mathbb{R}$
\n• So, $P = \begin{pmatrix} a & b \\ -a & b \end{pmatrix}$ or $\begin{pmatrix} b & a \\ b & -a \end{pmatrix}$, for any nonzero $a, b \in \mathbb{R}$.

Problem 5. [**25**] [**Sections 7.1-7.4**] Let *A* = 1 0 0 0 $\overline{}$ 0 0 0 1 0 1 1 0 0 0 0 0 Í $\begin{array}{c} \hline \end{array}$.

- (1) [**2**] Reduce *xI*−*A* to its Smith normal form.
- (2) [**4**] Use the Smith normal form of *A* to find its invariant factors.
- (3) [**3**] Find the rational form for *A*.
- (4) [**8**] Find the Jordan form for *A*.
- (5) [8] Let *T* be a linear operator on \mathbb{R}^4 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3, e_4\}$. (a) Find the respective *T*-annihilators of e_1 , e_2 , e_3 , and e_4 .
	- (b) Announce the Cyclic Decomposition Theorem for this case.
	- (c) Find an explicit cyclic decomposition of \mathbb{R}^4 under *T*.

SOLUTION

—————————————

—————————————

$$
(1) \bullet \bullet xI - A \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & x-1 & 0 \\ 0 & 0 & 0 & x^2(x-1) \end{pmatrix}; f_1 = 1 / f_2 = 1 / f_3 = x - 1 / f_4 = x^2(x-1).
$$

(2) By the *Invariant Factors Theorem* combined with the *uniqueness of the Smith normal form*, we get

xI−*A* ∼ $(x^2(x-1)$ 0 0 0 $\overline{}$ 0 *x*−1 0 0 0 0 1 0 0 0 0 1 Í $\begin{array}{c} \hline \end{array}$, where the invariant factors are

$$
\begin{cases} \bullet \bullet p_1 = x^2(x-1) \text{ , Minimal Polynomial}\\ \bullet \bullet p_2 = x-1 \end{cases}
$$

(3)

 \int_0^{∞} Charac. Poly. *f* = *p*₁*p*₂ = *x*²(*x*−1)² $\sqrt{}$ $\overline{}$ $p_1 = x^2(x-1) = x^3 - x^2$ *p*² = *x*−1

(4) $f = p_1 p_2 = x^2 (x - 1)^2$

(5) (a) The *T*-annihilator p_α of any vector α satisfies $\left\langle \right\rangle$ $^{2}(x-1)$ *p*_α is minimal with $(p_\alpha T) \alpha = 0$

- $Te_1 = e_1 \Rightarrow pe_1 = x 1.$
- $Te_3 = e_3 \Rightarrow p_{e_3} = x 1.$
- $T^2 e_2 = Te_2 = e_3 \Rightarrow p_{e_2} = x(x-1).$
- $\{e_4, Te_4 = e_2, T^2e_4 = e_3\}$ linearly independent $\Rightarrow p_{e_4} = p_1 = x^2(x-1)$.

(b) Cyclic Decomposition Theorem: $\exists \alpha, \beta \in \mathbb{R}^4$ such that $\int \cdot \mathbb{R}^4 = Z(\alpha, T) \oplus Z(\beta, T)$

• with $p_\alpha = p_1$ and $p_\beta = p_2$

(c) Therefore,
$$
\begin{cases} \bullet \alpha = e_4 \\ \bullet \beta = e_1 \end{cases}
$$
; that is,
$$
\begin{cases} \mathbb{R}^4 = Z(e_4, T) \oplus Z(e_1, T) \\ \text{with } Z(e_4, T) = \mathbb{R}e_4 \oplus \mathbb{R}e_2 \oplus \mathbb{R}e_3 \\ \text{and } Z(e_1, T) = \mathbb{R}e_1 \end{cases}
$$

Problem 6. [**15**] [**Section 8.3 - Ex 11**]

—————————————

—————————————

Let *V* be a finite-dimensional inner product space.

- (1) [**3**] Prove that any orthogonal projection of *V* on a subspace *W* is self-adjoint.
- (2) [8] Let *E* be a projection (i.e., $E = E^2$). Prove that if *E* is normal, then *E* and E^* have the same nullspace, and use this fact to show that $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$
- (3) [**4**] Deduce from (1) and (2), that "*a projection is normal if and only if it is self-adjoint*."

SOLUTION

(1) • • • Let $\alpha, \beta \in V$ and let $E: V \longrightarrow W$ be the orthogonal projection. Then:

$$
(E\alpha \mid \beta) = (E\alpha \mid \beta - E\beta + E\beta)
$$

= $(E\alpha \mid \beta - E\beta) + (E\alpha \mid E\beta) = (E\alpha \mid E\beta)$
= $(E\alpha - \alpha + \alpha \mid E\beta)$
= $(E\alpha - \alpha \mid E\beta) + (\alpha \mid E\beta) = (\alpha \mid E\beta)$
= 0

So,
$$
E^* = E
$$
.

(2) Nullspace (E) = Nullspace (E^{\star}) **:**

- *. E* is normal, then $EE^* = E^*E$.
- •• . $||E\alpha||^2 = (E\alpha | E\alpha) = (\alpha | E^{\star} E\alpha) = (\alpha | E E^{\star}\alpha) = (E^{\star}\alpha | E^{\star}\alpha) = ||E^{\star}\alpha||$ 2 .
- $E\alpha = 0 \Longleftrightarrow E^{\star}\alpha = 0$
- $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$:
- •• . Nullspace(E^*) = (Range(E))^{\perp} since $E^* \alpha = 0 \Longleftrightarrow (E\beta | \alpha) = (\beta | E^* \alpha) = 0$, $\forall \beta \in V$
- •• . $V = \text{Range}(E) \bigoplus \text{Nullspace}(E) = \text{Range}(E) \bigoplus \text{Nullspace}(E^{\star}) = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$

••• (3) (\Longrightarrow) Assume *E* is a normal projection. By (2), $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$. Hence, *E* is orthogonal on Range(*E*) and so self-adjoint by (1).

 \bullet (\leftarrow) Trivial.