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Q1 | Consider the Runge-Kutta method with
tableau given below

1/4 | 7/24 -1/24 a) Find the stability function of the method.
3/4113/24 5/24 b) Is the method A-stable?
12 12

In MATH571 textbook page 231[Butcher, John Charles. Numerical methods for ordinary differential equations. John
Wiley & Sons, 2016.],

Theorem 351B A Runge-Kutta method with stability function R(z) =
N(z)/D(z) is A-stable if and only if (a) all poles of R (that is, all zeros
of D) are in the right half-plane and (b) E(y) > 0, for all real y.
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Q2 | Consider the linear multistep method  y, = y,,—1 + 2Af (Xy—1, Yn—1) — Af (Xpn—2, Yn—2)
Determine if the method is consistent and stable. If it is consistent, then find the order.

(1) Consistent Method:

First let us start by finding the truncation error:

t(h) = y(xn) — y(xn — h) = 2hf (X — byt — h)) + hf (xn — 2k, y (X, — 2h))
= y(xn) - y(xn - h) - Zhy,(xn - h) + hy,(xn - Zh)

h
=y0) = |y0m) —hy' () + 5 y" () + o | = 2R [y Cen) = hy" () + - T+ R [y"Gen) — 2Ry (2) + -]

hz n
= Ty y (xn) + e
Sot(h) > 0 as h —» 0. Hence, the method is consistent and the order of the method is 1.

OR

In MATH571 textbook page 107 [Butcher, John Charles. Numerical methods for ordinary differential equations. John
Wiley & Sons, 2016.], General form of linear multistep methods

Yn = O1Yn—1 + Q2Yn—2 + - + QpYn—k
+1(Bof(@n,yn) + Brf(@n-1,Yn-1) + B2 f (Tn-2,Yn2)
+ ot Bef (@ Yn—r)-
k=2,a0,=10,=0,0=0,1=2,,=-1
Associate pair of polynomials

a(z)=1-2z, f(z)=2z-7*
A ‘consistent method’ is a method that satisfies the condition that B(1) + o’(1) = 0, in addition to satisfying the

preconsistency condition a(1) = 0.
a(1) =0 and a'(z) = —1. Moreover, we have $(1) + a'(1) = (2 — 1) + (—1) = 0. Hence the method is
consistent.

Theorem 410B A linear multistep method [o, 3] has order p (or higher) if
and only if

a(exp(z)) + z8(exp(z)) = O(zP+1).

a(e®) +zBp(e?) =1—-e’+z(2e"—e*? )=1—-e’+2ze”—ze*
1.. 15 12,15 2, 4 3
=1—(1+z+—z +—-z +--->+2z(1+z+—z +—-z +--->—z(1+Zz+2z +-z +>
2 6 2 6 3
= —%zz +--= 0(22). Hence the order of the method is 1.




(1) Stable Method:

From [Burden RL, Faires JD, Burden AM. Numerical analysis. Cengage learning; 2015.] page 346

Definition 522 1LetA,,X,,...,A, denote the (not necessarily distinct) roots of the characteristic equation
PA)=A"—au A" ' —...—aqh—ay=0
associated with the multistep difference method

W=, W=, ..., Wpg_|] =0y

Witl = Qu Wi +Qu_aWi_y + -+ GWiy1—m + hF (i, A, Wis1, Wiy oo s Wigi—m).

If|A;] < 1,foreachi = 1,2, ..., m, and all roots with absolute value 1 are simple roots,
then the difference method is said to satisfy the root condition. [ ]

Definition 5.23 (i) Methods that satisfy the root condition and have A = 1 as the only root of the
characteristic equation with magnitude one are called strongly stable.

(ii) Methods that satisfy the root condition and have more than one distinct root with
magnitude one are called weakly stable.

(iii) Methods that do not satisfy the root condition are called unstable. ]

The method can be rewritten as : y, 41 = ¥, + 2hf (X, ,¥n) — h f (Xn-1, Yn-1)
In this case, m = 2,a; = 1,a, = 0. So the characteristic equationis P(1) =12 —1=21(1—1).
This polynomial has roots 4; = 0,4, = 1. Hence, it satisfies the root condition and is strongly stable.




Q3 | Prove the following Theorem:

Theorem: Let f be a continuous function and satisfies a Lipschitz condition for [a,b]x R, Let
y'=f(x,y), xe[a,b], yeR"

y(a) =Y

Then, 3 aconstant K > 0 such that €, , the global error in Euler’s method, satisfies

<Kh, k=0212,...,N

y € C*[,b] be the solution of {

&

PROOF:

Taylor series gives:
Y(ti) = Y6 + hy' (L) + 5h* (&)
Using the notation y(t;) = y;:
Yivr =YV T hf(t, yi) + %hz y"(§) (3)
Euler’s formula :
Wip1 = w; + hf (&, wy) (4)
Subtract (4) from (3):

1
Vi1 — Wigr = Yi —w; + h[f (&, ) — f (G, w)] + Ehz y" (&)
Take absolute value and use triangle inequality

1
|Visr = Wisal < |y —wi| + hlf (&, y:) — f(ELw)] + Ehz ly" (§)]

Using Lipschitz condition and the bound | y''(t) I< M give:

h*M
[Vier = Wisal S |lyi —wi| + R L |y, —wy| + >
Using the notation E; = |y; —w;| =l ¢; I:
M

Eipn S E+hLE +—
2

h
E;.1 < (1+hL)E; + (5)




let i =0, 1, 2, --- inequation (5)

2 2
i=0- E<(+hl)E+2" <TF eo = |y = wo| = 0
" WM hZM
i=1- E;<(1+hl)E +— <@ +hl)——+—

, h2m L hM WM hM
i=2- E3S(1+hL)E2+T <@ +hL) T+(1+hL)T+T

Clearly by induction for the case i = k we have :
2

E, < (14 hL)E,_, +

2
k-1 M k-2 M h’M
<(A+hl)* ' —+ A +hL)F 2 —+ o+ —
2 2 2
h*M o o
<[ +hL)F T4+ @ +hL)F 24 41] (geometric series with ratio r=(1+hL))
B 2
_ i+l
< 1-(1+hL)¥1h*M 1+r+r2+---+ri=11 .
-Tr
“|1-@AQ+hL)| 2
h M
<[(1+ ALk —1]——
<[+ hL* — 157
hM
S[(e“)k—l]ﬁ seeremark: 1+hL <el!
h M
< Lkh_l_
<|[e ]2L
hM
<[elt-a _1]=——= ty =a+kh
<|e ]2L
hM
s[e“b—fﬂ—l]ﬁ t, <b,forallk

Hence, we have the error bound:

E,<[et®-a — 1]2—7

2L

L(b-a) _
lex| < K h where K = <[e 1] M)

Remark

. . positive
d Taylor series gives: i
1

X — 2,8
letx = hL:° 1—|—x—|—2x €

1
e“:1+hL+§(hL)ze‘f =1+hlL
el >14hnL




Q4 | Prove that: Explicit Runge—Kutta methods can never be A-stable

For any Explicit Runge—Kutta method, defined by the tableau

The matrix A is lower triangular (all diagonal entries and above the diagonal are zeros).
Now the stability function is given by

_det (I + (157 — A))
RE) = —qma - 2A)

Note that det(I —zA) = 1.(i.e) R(z) = det(I + z(1b"T - A)) (is a polynomial)

R(z) is polynomial. R(x) is a polynomial where x is real number. X'EDOO‘R(X)‘ = +0.which implies
that the method is not A-stable




Q5 | Solve the given boundary value problem using the finite difference method

u"'+6u = x with boundary conditions u(0)=0,u(4)=1.
Suppose the finite difference approximation for the second-order derivative U"'= (U, —2u, +U,_,)/h?
and the given interval is divided into four equal subintervals. (Just write the linear system. Don’t solve

the system)
0 1 2 3 4 fori=1 Wo+4w; +w, =Xxq
I I | ! I fori=2 W1+4W2+W3=x2
Xo X1 X2 X3 X4 for i = 3
or i = _
wo=0 Wi w2 ws wy=1 Wy +4ws +wy = x3
b—a  4-0 Use the boundary conditions
The mesh size is h:T:Tzl

u'(x)+6ulx)=x

We replace the second derivative by central difference

Wip1 —2W; +Wiq
hz + 6 W = X;

fori=1,2,3

(Wi —2wi+w;_4) +6W; =%; fori=1,23

Wi—1+4Wi+Wi+1 =X fori=1,2,3

0 +4W1+W2:1
wy +4wy, +wy =2
w,+4w;+ 1=3

It is a linear system of three
equations in three unknowns
wy, Wy and ws

4 1 0] 1
1 4 1|{W2|=|2
0 1 41lws 3




Q6 | Consider the following three problems
BVP
u"-3x°u'+3xu=>5
u(0) =1, u@)=2 u,(0) =1,

(VP-1)

u,"-3x°u,"+3xu, =5
u,'(0)=0

(IVP-2)
u,"-3x°u,+3xu, =5
u,(0)=1  u,’(0)=1

The numerical solutions of the (IVP-1) and (IVVP-2) are given in column(1) and column(2),
respectively. Use shooting method to find the numerical solution of the (BVP) then fill column(3).

X | u) | u(X) u(x)
0 1 1

0.2 1.095654 | 1.294856

0.4 1.357517 | 1.745005

0.6 1.719056 | 2.25898

0.8 2.074545 | 2.702588
1 2.315669 | 2.955164

The shooting method for linear equations is based on the
replacement of the linear boundary- value problem by two

initial-value problems.

Since the differential equation in (BVP) is a linear ode.
Now, we can write the solution of (BVP) as a linear
combination of the solutions of (IVP1) and (IVP2).

wx) =Auy () + (1 = Dup(x)

We

W) = Az () + (11— Ay (%)

W)=

want

w(l) = Auy(D +(1~ Dy () = B

Solve: 1 B-u(1)

u()-u, 1) A= 1.49362242

X ul(X) UZ(X) U(X)

0 1 1 1
0.2 1.095654 | 1.294856 | 0.997323426691160
0.4 1.357517 | 1.745005 | 1.166244235719040
0.6 1.719056 | 2.25898 | 1.452537408503920
0.8 2.074545 | 2.702588 | 1.764528894475940

1 2.315669 | 2.955164 | 2.0
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