Department of Mathematics and Statistics, KFUPM
Comprehensive Exam, Math 571, 20 Jan, 2021, Duration: 150 mins

Solution

Problem 1(20 points) : Consider the initial value problem
y = xsin(y) for z €[0,2], y(0) =7/2 (1)

a) Show that (1) has a unique solution y € C[0, b] for some b > 0.
b) Define the one-step Explicit Euler scheme and show that the global error is O(h).

c) Define the one-step implicit Euler scheme and show that the truncation error 7,, is O(h).

Solution:
a) Using Picar’s Theorem the problem (1) has a unique solution if f(z,y) = x sin(y) continuous in
its first variable and satisfies a Lipschitz condition in its second variable. Clearly f is a continuous

function with respect to = € [0, 2]. Since g—i = z cos(y), then

|f(z,y1) = [(z,y2)] < |zcosy|lyr — ya| < 2ly1 — y2|

That is f is Lipschitz continuous with Lipschitz constant I. = 2. Thus, (1) has a unique solution.
for part (a) 3 points

b) The Explicit Euler method is given by dividing the interval [0, 2] into N sub- intervals using
mesh points z,, = nh for 0 < n < N with h = 2/N. If we denote the by y,, the approximate

solution of y(x) at z,,, then the scheme is given by

Yo = y(0) ()
Ynt1 = Yn + hf(In, yn)’ 0<n< N—-1 2 pOil’ltS (3)

To estimate the global error, we need bound for the truncation error which is given by the following

formula

Tn _ y($n+1)h_ y(In) . f(«rmy<xn)) (4)

By noting that f(z,,y(x,)) = v'(x,) and applying Taylor’s Theorem, it follows from (4) that there



exists &, € (zp, Tny1) such that

1

Note that
y"(x) = sin(y) + x cos(y)y'(x) = sin(y) + 2° cos(y) sin(y)

So that |y’ (z)] <1+ 22 <1+ 4 =5 (1 point) and then
5h )
1T,| < 5 (2 points )
Since from the definition of Euler’s method

on subtracting this from (4), we deduce that
eni1 = en + h[f(zn,y(x,)) — f(@n, yn)] + KT,. 3 points
from Lipschitz condition we get
lens1| < (L +hL)|en| + ATy, n=0,---,N—1

By induction, and noting that 1 + hL < e"*

1,
len| < |_L|[(1 +hL)" — 1]+ (1 + hL)"|eo]
1,
< |L| (eL(In*l"O) _ 1) + eL(I"7x0)|€0’,
5h L(:E —r ) L(iﬂ —Z )
SQ (e n 0_1)+€ n 0‘€0|’ n:l,-..’N

for eg = y(0) —yo =0, L = 2,x,, = 2 and xg = 0, we conclude

|en|§Z(e4—1):C’h, n=1,---,N 3 points



The Implicit Euler method for (??) is given by

Yo = y(wo)
Yni1 —Yn=hfnrr 0<n<N-—1 2points (6)

Let y(z) be the exact solution of (??). We define the Truncation Error (TE) by

T, = y(“””””h_ V@) _ i y(@s)) (7

Using Taylor expansion of y(x,) = y(x,+1 — h) around z,,, 1, we have

h? , .
y(%) = y(InH - h) ~ y($n+1) - h?/(%ﬂ) + ?yl(¢n+1)7 Yp1 € ($n7$n+1) 2 points

Substitute in the TE expression gives

. / _ hZn
7, = W) =) 4 W ) = 5 ) _ )

h
= y/(xnﬂ) - §y”(¢n+1) - y/($n+1)
Then

h M )
T,| = §|?J”(?/)n+1)| < h; 2 points

Problem 2(16 points) : Given that ¢ is a positive real number, consider the linear two-step method

h
Yn+2 — 5yn+1 = §(Bfn+1 - fn)

on the mesh {z,, : ©, = xg + nh, n=20,--- N} of spacing h, h > 0.
a) For which values of § the method is zero-stable?

b) Is the method convergent for 6 = 1? If No, justify your answer. If yes do the following:
1. Determine the order of accuracy and the error constant.
2. Give a bound for the truncation error 7,.

Solution:

The method is zero stable if and only if its first characteristic polynomial has zeros inside the closed

3



unit disc, with any which lie on the unit circle being simple.

The characteristic polynomial is
p(r) =71 —=6r =r(r —4) (1 point)

Hence it has two roots » = 0,7 = §, and then the method will be zero stable iff |§| < 1(1 point).

Using the assumption ¢ is real positive, we conclude that our choice of ¢ for zero stable to be

d € (0,1] (2 points).

For 6 = 1 we have "
Yn+2 — Yn+1 = 5(3fn+1 - fn)

Thus, p(r) = r? — r and o(r) = (3r — 1). The method is consistent if

p(1)=0 and p'(1) =0(1) #0. (2 points)

In this method we have
1
p(1)=1—-1=0 and p’(l):2(1)—1:17é0, 0(1)25(3—1) :1:p’(1).

So the method is consistent and zero stable for 6 = 1 and therefore is convergent. (2 points)

Again for ) = 1 we have
h
Ynt2 = Ynt1 = 5(3fn+1 — fn)

The a = L,ay = —1,ag =0, f=0,0 =3, and fy = —}.
This method is of order p iff

C():C1:~~Cp:O and Cp+17é0



. where

P
C’1 - Zjaj - ZB]
j=1 j=0

k ja k ji-1
O — J s — S —
! ;q! ’ Z(q—l)! ’

j=1

for k = 2, we have

Co=1—-14+0=0, (0.5point)

3 1
Ci=12-1)— (5 — 5) =0, (0.5 point)
1 3
8§ 1 3 ) .
03_6_6_4_1_E7é0 (0.5p01nt)

Thus this method is of second order accuracy (2 point) with error constant C'3 = % (1 point)

The truncation error is

T, = &th”’(xn) + O(h*) (2 points)

o(1)

where o(1) = 322, B; = 2 —2=1%#0. Thus,

=

T, = %th’”(xn) +O(h*) (1 point)



Problem 3 (12 points): Consider the following two-point BVP:
—y"(x) +y'(x) +y(z) =2 for x € (0,1) with y(0) =y(1) =0, (8)

a) Develop a second order accurate finite difference scheme for the above BVP.

b) Show (briefly) that the truncation error of the numerical scheme in part a is of order two.
Solution:

We discretise (8) using a finite difference method on the uniform mesh {z; : z; = ih, 1 =
0,---,N}of step size h = 2/N, N > 2. Assuming that y is sufficiently smooth, and using Taylor

series expansions for the derivatives, we have

Y(wir1) — 2y(x:) + y(wi 1)
h2
Y(rit1) — y(wi1)

y () = % +O(R?), (10)

+0(h?), ©)

y//(xz) —

Using (9)-(10), we can construct a finite difference method for the numerical solution of (8); we

denote by y; the numerical approximation to y(z;) fori =0,--- | N

_Ym =2t Y Yt — Yi

32 57 +y; =x7 4 points

After rearranging these, we obtain

L2 (1) g (-2 1 2 2. 1<i<N-1
—735 " 57 | Yi- %) i —73 T o7 | Yit1 = Ty, St NV —
pe o oon) Yt (2 4 R op )Yt TN

This is a system of linear equations of the form
Aiyi-1+ Cyi + Biyiypn = Fi, 1=1,--- N — 1.

The matrix form of the system is

Cy By O 0 )2
A, C, B 0 F.
M= |72 77 and F = .2
R & I :
0 0 0 Ay Oy Fn_4

Substituting the coefficients, we have



( 22?) 24h 0 ]
—2-h (M) 2-h 0
M= 2h2 h2 2h2
2h2
—2—h 2+h%z
000 3 (3),
(24 h?) 2-— 0 0
Sl -E-1 (2+hY) 2-1 0
T2 h
h e b
0 0 0 -2-1 (2+n%
and
i
F &
X1
(b) Using Taylor series expansion, we have
h? h3
Y(@ir1) = y(@:) + hy'(z:) + ?y”(xi) + Ey'”(xi) +--- lpoint
h2 3
y(zi1) = ylx;) — hy'(z;) + ?y”(:ci) - Ey’”(xi) +--- 1 point

Adding (11) and (12),

h4
Y(@ir1) + y(@i1) = 2y(a;) + 2%y (2;) + 59(4)(1’1) +---

2
=y () = y(iy1) — 2?/}52%) +y(@i1) %yu)(mi) S

Subtracting (11) and (12),

/ h’3 n
Y(@iy1) — y(xio1) = 2hy' (2;) + QE?/ (zi) + -+

i+1) — Y(Tie h?
- y/(%) _ y(Q? +1)2hy(x 1) + Ey///(l,i) 4.

Y

12)



Then,

Y(wip1) — 2y(x;) + y(2i-1) h? (4)(z3)
2

|:y(&3i+1) —y(xi-1) n h_ym(%) 4+ .. } +y(z;) 3 points

() + o (@) + () = {—

+ oh 6

Therefore, the truncation error

1 1
T, = h? [Eyw + gy"’(xi)} 3 points

ie. |T,| < Ch?
Problem 4(10 points) : Give an example of a consistent O(h?) accurate three-stage RK method

(Justify your answer).
Solution: Heun’s Method defined by

1
Ynt1 = Yn + Z_Lh(kl + 3k3) 1 point
where

kl = f(xmyn)a

1 1
]{32 = f(l'n, +§h7 UYn + ghkl) 1 pOil’lt

2 2
ks = f(.iEn + gh, Un + ghk’g) 1 pOiIlt

For general explicit one step method

Yn+1l = Yn + hq)(xna Yn; h)

the method is consistent if
(z,y;0) = f(z,y)

For Heun’s Method

B(r,4:0) = 1 (ks + k) = 1(f(2,9) + 37(x,9)) = f(z,y) 2 points



and the method is consistent.

To show that the method is O(h?) accurate, we estimate the truncation error

T = y(xn+1)h— y(n) O(2, y(20); h).

using Taylor expansion of y(z,1), we have

/ h " h2 " 3
To =y (z) + Sy (@n) + —y" (xn) + O(R7)

2 6
1 1 1 1 .
— f + h§F1 + §h2 (gFlfy + gFQ):| 3 pOll’ltS
where Fy = f, + ff, and Fy = fop + 2f foy + 2 f,y- Using

Fl — y// = y// — Fl 1 pOint
F2:y/”—y//fy:y///—Flfy:>ym:F2+F1fy 1 pOth

We conclude T;, = O(h?)
Similar argument can be used considering the standard third-order RKM

1
Ynt+1 = Yn + éh(k?l + 4ko + k3)
where

kl = f(xrwyn)a
1 1
k2 = f(xn; +§h7 Yn + §hk1)

ks = f(zn + h,yn — hky + 2hks).

Problem 5(12 points) :: A predictor P and a corrector C' are defined by their characteristic

polynomials:



a) Find the stability polynomial 7p(gcym g of this method.

b) Assuming that m = 1, use Schur’s criterion to calculate the associated intervals of absolute
stability. Is this method A— stable? (Justify your answer).

Solution:

The stability polynomial for the P(EC')™E predictor corrector method is given by

Tpcecyni = p(z) — ho(2) + My (B) (0" () — o™ (2)).

where, for m = 1,

L 1-
Mm(h) = hf = §h
Hence,
5 P PO U . h?
Tppeynp(2) = 2° — (1+h+ Zh )z + T (2 points) = mpEcymE(0) = T
Define
R h? ~ 3, : R
TpEc)ymp(2) = i (1+h+ Zh )z2+1, (2points) = 7pmeymr(0) =1

then |7 ppcyme(0)| > [Tp(ecymE(0)| <= -2 < h < 2 (2 points) and the polynomial

R - 3., h? h% (B2, _ 3., ,
7T1(T’)—;|:(T —(1+h+1h )T+Z —Z ZT —(1+h+1h )T’+1 (2pOIHtS)
is a Schour polynomial (i.e. its roots 7, satisfies [r,| < 1,5 = 1,--- , k) iff h € (=2,0) (2 points).

Thus, we conclude that the region of absolute stability is (—2, 0) which is not the whole half plan
and therefore the method is not A— stable (2 points).

Good luck
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